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ETH Zürich, Departement Mathematik

Rämistrasse 101, 8092 Zürich, Switzerland

ABSTRACT. In this paper, nonadditivity of a set function is interpreted as a method to express
relations between sets which are not modeled in a set theoretic way. Drawing upon a concept
called “quasi-analysis” of the philosopher Rudolf Carnap, we introduce a transform for sets, func-
tions, and set functions. The transformed of a set can be interpreted as a class of components or
properties representing this set. Since the transformed of a nonadditive set function is σ-additive,
probabilistic concepts like independence and conditioning can be canonically introduced to the
nonadditive theory via this transform.
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1 Introduction

The starting point of our research is that we want to interpret nonadditivity of a set function µ,
i.e. µ(A ∪ B) 6= µ(A) + µ(B) for disjoint sets A and B, in such a way that a) there is a rela-
tion between the sets A and B not being modelled in a set theoretic way since this would imply
A ∩B 6= ∅ and that b) µ(A) + µ(B)− µ(A ∪B) is a measure for the strength of this relation. To
formalize this idea, we draw upon a concept called “quasi-analysis” introduced by the philosopher
Rudolf Carnap in “The logical construction of the world” in 1928 being a generalization of some
abstraction principles of Frege, Russell and Whitehead.

Carnap’s concept of quasi-analysis can be outlined as follows. Suppose there is given a set of basis
elements and a system of logical connections over this set, either in the form of binary relations
or in the form of a set system over the set of basis elements. In the latter case, every element
of the set system is interpreted to represent a component or property being shared by each of
its elements. Since the basis elements are supposed to be indivisible unities, these sets are called
“quasi-components” or “quasi-properties” of the basis elements. This method of analyzing basis
elements using their quasi-components is called quasi-analysis. If the set system is large enough
then every basis element can be represented by the set of its quasi-components.

The next step is to apply the quasi-analysis to our problem. Starting with a nonempty and for the
moment finite set Ω and an algebra A over Ω, we interpret sets A ∈ A in two different ways, either
just as a set containing its elements or as a quasi-component of its elements. In the latter case A
stands for a quasi-property or quasi-component being shared by all basis elements of A and not
being shared by all basis-elements outside A. For every set A ∈ A of basis elements, we call a set
B ∈ A a “quasi-component of A”, if B is a quasi-component of some element of A, i.e. if B∩A 6= ∅.
Therefore, any set A of basis elements can be represented by the set Â of its quasi-components,
Â := {B ∈ A | B∩A 6= ∅}. We then show that any set function µ : A → R can be transformed into
a (signed) measure µ̂ on the algebra Â := σ{Â | A ∈ A} generated by the sets of quasi-components
of sets in A such that µ̂ preserves the values of µ, i.e. µ̂(Â) = µ(A) holds for all A ∈ A. Further-
more, every µ-(Choquet-)integrable function f : Ω → R can be transformed into a function f̂ on
the set of quasi-components such that the value of the µ-integral is preserved,

∫
f̂dµ̂ =

∫
fdµ. As

one simple result, we obtain µ̂(Â ∩ B̂) = µ(A) + µ(B)− µ(A ∪B) solving our problem introduced
at the beginning. Thus, nonadditivity of a set function µ can be interpreted in such a way that µ
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assigns to a set A the value of the set of its quasi-components Â. Moreover, µ can be decomposed
into the measure µ̂ and the transform which maps to every set A the set of its quasi-components Â.

With a view to this interpretation of nonadditive measure and integral we show how this transform
can be applied to different fields of mathematical economics like cooperative game theory, multi-
criteria decision making and expected utility theory by showing that the quasi-components have
a meaningful interpretation in the respective theories. Moreover, we show that this transform
enables us to transfer concepts like products, conditioning and independence from standard to
nonadditive measure and probability theory in a very natural way. Our definitions of products,
conditioning and independence are different from already existing ones but they are well-founded
as they are based on a very comprehensive interpretation of nonadditive measures. Finally, we
extend our mathematical results to the general, nondiscrete case. Mathematically, the presented
transform is somehow dually to the Möbius transform and closely related to the representation of
plausibility functions in terms of basic probability assignments.

2 Notations

Throughout this paper, let Ω denote a nonempty set, A a σ-algebra over Ω, and µ : A → [0,∞[
a set function on A with µ(∅) = 0. To every set function µ its dual set function µ is defined by
µ(A) := µ(Ω)− µ(Ac). A set function µ is called monotone if A ⊂ B implies µ(A) ≤ µ(B). It is
called k-monotone if

µ(∪k
i=1Ai) +

∑
I⊂{1,...,k}

I 6=∅

(−1)|I|µ(∩i∈IAi) ≥ 0 for k ≥ 2 and A1, . . . , Ak ∈ A,

k-alternating if µ is k-monotone or, equivalently, if

µ(∩k
i=1Ai) +

∑
I⊂{1,...,k}

I 6=∅

(−1)|I|µ(∪i∈IAi) ≤ 0 for k ≥ 2 and A1, . . . , Ak ∈ A,

totally monotone if µ is monotone and k-monotone for every k ≥ 2, and totally alternating if
µ is totally monotone or, equivalently, if µ is monotone and k-alternating for every k ≥ 2. A belief



In the subsequent proposition we collect elementary results on the transformed sets. We omit the
proof since it consists of simple calculations.

Proposition 3.1 For A,B ∈ A

(a) ∅̂ = ∅, Ω̂ = A \ {∅}, (c) Â ∪B = Â ∪ B̂, (e) Â \B ⊃ Â \ B̂,
(b) A ⊂ B ⇔ Â ⊂ B̂, (d) Â ∩B ⊂ Â ∩ B̂, (f) Âc ⊂ Âc.

Remark 3.2 The following statements on the relation between the ̂-operator and monotone se-
quences can easily be proved and will be of interest later on.

(An)n∈N ↗ A ⇒
⋃
n∈N

Ân =
⋃̂
n∈N

An, (3)

(An)n∈N ↘ A, An 6= A ∀n ∈ N ⇒
⋂
n∈N

Ân %
⋂̂
n∈N

An. (4)

Especially, in the latter case, Ac ∈
⋂

Ân \
⋂̂

An.

We now address the problem if every set-function µ : A → R can be transformed into a measure
µ̂ : Â → R on the set of properties, satisfying

µ̂(Â) = µ(A) for all A ∈ A, (5)

i.e. the measure of the set A should equal the measure of all of its quasi-components. Such
a transformed set function would solve our task for interpreting nonadditivity as a method of
expressing a connection between the sets in A which is not modeled in a set theoretic way. For
two disjoint sets A and B, we interpret µ(A) + µ(B)−µ(A∪B) as a measure of there connection.
This interpretation perfectly fits with that of Â∩ B̂ being the set of all common quasi-components
of A and B and of µ̂(Â ∩ B̂) being a measure of their weight because

µ̂(Â ∩ B̂) = µ̂(Â) + µ̂(B̂)− µ̂(Â ∪ B̂)

= µ̂(Â) + µ̂(B̂)− µ̂(Â ∪B)
= µ(A) + µ(B)− µ(A ∪B).

Furthermore, equation (5) can be interpreted in such a way that µ accumulates the weights of the
quasi-components of any set A ∈ A and assigns this weight to the set A.

According to Remark 3.2, the transform µ̂ of µ won’t be σ-additive in general since whenever
limn→∞ µ(An) < µ(A) for a monotone increasing sequence (An)n∈N we also would have that
limn→∞ µ̂(Ân) < µ̂(Â) by equations (3) and (5), i.e. µ̂ wouldn’t be continuous from below. In
order to make µ̂ σ-additive, we have to enlarge the set of quasi-components to that effect that
equation (3) changes to

(An)n∈N ↗ A, An 6= A ∀n ∈ N ⇒
⋃
n∈N

Ân $
⋃̂
n∈N

An, (6)

while maintaining equation (4). A natural approach is very similar to the completion of the rational
numbers via Cauchy sequences: The set of quasi-component (more precisely, the generator of Â) is
then the set of equivalence classes of monotonously increasing sequences inA, under the equivalence
relation (An) ∼ (Bn) if there exists a monotonously increasing interleave sequence, i.e. if

(An) ∼ (Bn) :⇔ ∃ (Cn) increasing with {Cn |n ∈ N} = {An |n ∈ N} ∪ {Bn |n ∈ N}.

We state without a proof that every such equivalence class
[
(An)

]
can uniquely be represented by

a plausibility function:

ν[(An)](A) :=

{
1 if ∃ (Bn) ∈

[
(An)

]
: A = Bn for some n ∈ N

0 else
.

3



We therefore redefine

Â :=
{
ν plausibility function | ν(A) = 1

}
for all A ∈ A, (7)

Â := σ
{
Â |A ∈ A

}
. (8)

We call the elements of any set Â the set of quasi-components of A. It is easy to prove that
Proposition 3.1 remains valid and that inequalities (4) and (6) hold under the redefined terms.
Moreover, it can be shown that in the discrete case any plausibility function is a dual unanimity
game which again can be represented by a set in A such that the definitions (1) and (7) as well as
(2) and (8) coincide.

Furthermore implicitly understanding that there exists a transformation between nonadditive set
function and signed measures satisfying equation (5), we now show how (µ-integrable) real-valued
functions f



Theorem 3.3

(a) For any set function µ on an algebra A ⊂ 2Ω there exists a unique (signed) measure µ̃ on Ã
satisfying µ̃(Ã) = µ(A) for all A ∈ A.

(b) The measure µ̃ is nonnegative if and only if µ is totally monotone.

(c) For any µ-integrable function f holds
∫

f dµ =
∫

f̃ dµ̃.

The unique transformed µ̃ of µ is then called the Möbius transformed of µ.

The existence part of Theorem 3.3 (a) can be shown algebraically (cf. Denneberg 1997 [6]) or using
a version of Choquet’s Theorem using that Ω̃ consists of all extreme points of the set of belief
functions (cf. Choquet 1953 [4]).

We now “dualize” the preceding results by switching from belief functions to their dual, the plau-
sibility functions. Mathematically, this is merely a reformulation of Theorem 3.3 but in contrast
to the Möbius transform, our results have nice interpretation.
Additionally to the transforms for sets, σ-algebras and functions introduced on the preceding page,
we define T : Ω̃ → Ω̂ by T (ν) := ν. Simple calculations yield T−1(Â) = Ω̃\ Ãc, i.e. T is measurable
and transforms the generating system of Â into that of Ã and thus, the domain of the image
measure µ̃T of µ̃ under T is Â. Moreover,

µ̃T (Â) = µ̃(Ω̃ \ Ãc) = µ̃(Ω̃)− µ̃(Ãc) = µ(Ω)− µ(Ac) = µ(A).

This is already enough to obtain the “dual version” of Theorem 3.3.

Theorem 3.4

(a) For any set function µ on an algebra A there exists a unique (signed) measure µ̂ on Â
satisfying µ̂(Â) = µ(A) for all A ∈ A.

(b) The measure µ̂ is nonnegative if and only if µ is totally alternating.

(c) For any µ-integrable function f holds
∫

f dµ =
∫

f̂ dµ̂.

Proof.

(a) Existence and uniqueness follows from Theorem 3.3 (a) for µ̂ := µ̃
T
.

(b) Using Theorem 3.3 (b), we obtain

µ is totally alternating ⇐⇒ µ is totally monotone

⇐⇒ µ̃ is nonnegative
⇐⇒ µ̂ is nonnegative.

(c) By Theorem 3.3 (c),∫
f dµ = −

∫
−f dµ = −

∫
−̃f dµ̃ =

∫
f̂ ◦ T dµ̃ =

∫
f̂ dµ̃

T
=
∫

f̂ dµ̂. 2

In the discrete case, µ̂(Â) = µ(A) can be rewritten to

µ(A) =
∑

B∩A 6=∅

m(B)

for all A ∈ A with m : A \ {∅} → R, m(B) := µ̂({B}) for all B ∈ A. This result is well-known in
the Dempster-Shafer theory of evidence as the representation of a plausibility functions by a basic
probability assignment m (cf. Shafer [16]).
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4 Examples and applications

In this section, we provide some examples and applications showing that the dual Möbius trans-
form is nearly all-purpose in those theories making use of nonadditive set functions and their
corresponding Choquet integrals. We show how the dual Möbius transform can be interpreted in
multicriteria decision theory and in cooperative game theory.

4.1 Multi-criteria decision making

Usually, a multicriteria decision problem consists of at least two different alternatives and at least
two different criterias or attributes of the alternatives. A standard method to solve such a problem
is the usage of aggregation: each alternative is represented by function on the set of criterias such
that its values represent how “good” this criteria is distinct in this alternative. One has to intro-
duce a weight function (measure) on the set of criterias and the rank problem can then be solved
just by calculating the integral of each alternative representing function and rank them by their
values. To proceed in this way, one has to impose that the criterias are unrelated since otherwise
the common parts of different criterias are multiple weighted. Naturally, this presupposition is
not fulfilled in all multicriteria decision problems like e.g. in the following evaluation problem (cf.
Grabisch 1995 [10, p. 295] and Grabisch 1996 [11, p. 451]).

Ranking students (alternatives) on the basis of their marks in different subjects (criterias) poses
the problem that the different subjects do not measure mutually disjoint skills. For instance,
mathematical skills are not only tested in mathematics but also in in physics and chemistry. How
can the students be ranked in a reasonable way incorporating these redundancies? The simplest
approach, i.e. calculating weighted sums (i.e. expected values) of the marks is not an appropriate
method as mentioned above.

Instead of an expected value as an evaluation functional, Grabisch proposes the usage of the Cho-
quet integral. The measurable space then consists of the set of all subjects together with an
appropriate σ-algebra (usually the power set). A nonadditive set function µ is able to represent
correlations between subjects. For example, a redundancy of mathematics and physics can be
modeled by µ({mathematics,physics}) < µ({mathematics}) + µ({physics}). Roughly speaking,
the more correlations between the subjects exists the more has the set function µ deviate from
(σ-)additivity. In this method of resolution, the missing richness of the set of subjects to model
correlations in a set theoretic way is compensated by the use of nonadditive set functions.

Now, let us consider how the problem can be solved using the new transform. Let Ω := {M,P,L}
be the set of subjects (mathematics, physics, literature). The transformed subjects together with
their quasi-components are mapped in the following diagram.
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The subject mathematics then consists of four quasi-components: the component {M} of skills
exclusively necessary for mathematics, the component {M,P} of skills necessary for mathematics
and physics but not necessary for literature and so on. To model redundancy between mathematics
and physics, a positive value must be assigned to the set M̂ ∩ P̂ =

{
{M,P}, {M,P,L}

}
.

4.2 Cooperative game theory

We now show how to apply our new transform in cooperative game theory. Let us briefly recall
the setting in cooperative game theory. Denote by

S a nonempty set of players,

A ⊂ 2S an algebra over S interpreted as the set of all possible coalitions of players in S,

v : A → R+ the characteristic function of the game satisfying v(∅) = 0 interpreted as the max-
imum utility/payoff the coalition A can get without correlating strategies with the
other S \ A players. This interpretation justifies the often imposed condition of v
being superadditive.

In most cases, the characteristic function v is nonadditive. But we can interpret the nonadditivity
in a overlap of the worth generating abilities of the coalitions. E.g. v(C1)+ v(C2)− v(C1∪C2) > 0
or, equivalently, v̂(Ĉ1 ∩ Ĉ2) > 0, means that the coalitions C1 and C2 share some of their worth
gaining skills. Conversely, v(C1)+v(C2)−v(C1∪C2) < 0 resp. v̂(Ĉ1∩Ĉ2) < 0 could be interpreted
in terms of that the coalitions C1 and C2 share some properties baring them from gaining worth.
Thus, the dual Möbius transform of a characteristic function in cooperative game theory is a signed
measure on the worth generating abilities of the players and coalitions.

5 Mathematical consequences

Since the transformed of a set is interpreted as the class of quasi-components representing this set,
we can directly introduce probabilistic concepts via this transform. For example, two sets will be
called independent if the two classes of quasi-components representing these sets are independent
w.r.t. the transformed measure.

Definition 5.1 Let (Ω,A) be a measurable space and µ : A → [0, 1] be a set function interpreted
as a not necessarily σ-additive probability measure. We call a family (Ai)i∈I , I nonempty index-
set, of sub-σ-algebras of A independent if for any finite nonempty subset J of I and any sets
Aj ∈ Aj, j ∈ J ,

µ̂

⋂
j∈J

Âi

 =
∏
j∈J

µ̂(Âj).

Since, by the inclusion exclusion priciple, µ̂(
⋂

j∈J Âi) =
∑
∅6=K⊂J(−1)|K|+1µ̂( ̂⋃

k∈K Ak), we obtain
that independence of the family (Ai)i∈I is equivalent to

∑
∅6=K⊂J

(−1)|K|+1µ

( ⋃
k∈K

Ak

)
=
∏
j∈J

µ(Aj) (13)

for any nonempty finite subset J of I.
A family (Xi)i∈I of random variables is called independent if the familiy (σ(Xi))i∈I is indepen-
dent, i.e. if ∑

∅6=K⊂J

(−1)|K|+1µ

( ⋃
k∈K

{Xk ∈ Bk}

)
=
∏
j∈J

µ(Xk ∈ Bk) (14)

and any sets Bk ∈ B(R).
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Definition 5.2 Given a nonadditive probability µ and two events A and B with µ(B) 6= 0 the
conditional nonadditive probability of A given B is defined as the conditional probability of Â
given B̂

ν(A | B) := µ̂(Â | B̂)

=
µ̂(Â ∩ B̂)

µ̂(B̂)

=
µ(A) + µ(B)− µ(A ∪B)

µ(B)
. (15)

For the definition of products of nonadditive set function we are confronted with the problem that
we can not define µ1 ⊗ µ2 via µ̂1 ⊗ µ̂2 since the domains are not compatible. In the discrete case,
we can give a natural definition.

Definition 5.3 Let µ1 and µ2 be two nonadditive set functions on a discrete measurable space
Ω,A. Then their product µ1 ⊗ µ2 is defined by

µ1 ⊗ µ2(A) :=
∑

∅6=Ki∈Ai

µ̂1(K̂1) · µ̂2(K̂2) · uK1×K2(A). (16)

For the general case, there exist some results for the Möbius transform (cf. e.g. Brüning [1]) which
should be able to be transported to our setting similar to Theorem 3.4.

6 Conclusions and Outlook

We have introduced a transform for sets, functions, and set functions. Since the transformed of a
set can be interpreted as the class of the properties or components representing this set, any result
on the transformed space can directly interpreted in terms of the original space. This has enabled
us to define independence and conditioning for nonadditive probability measures via the transform.

The first results arising from this new approach presented in this paper give reason to hope that
the presented transform can establish a basis to build up a nonadditive probability theory in a
very natural way.
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