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Abstract

We present some upper estimates for Lévy’s metric and, as an appli-
cation, a Berry–Esséen type estimate for the rate of convergence in the
Central Limit Theorem in Lyapunov’s version in terms of Lévy’s metric
which improves the original one.

1 Introduction

All results providing an estimate of the speed of convergence to the normal distri-
bution can be classified into four groups, on the one hand by using Kolmogorov’s
metric or any other (e.g. Lévy’s metric), and on the other hand by using char-
acteristic functions in the proof or working on the original space of distribution
functions. Except for the case of calculating the distance w.r.t. Lévy’s metric
without using characteristic functions, all variants can be found in the literature.
In this paper, we therefore present some upper estimates for Lévy’s metric and,
as an application, a Berry–Esséen type estimate for the Central Limit Theorem
in Lyapunov’s version in terms of Lévy’s metric which improves the original one.

Our results are motivated as follows. In lectures on probability theory, charac-
teristic functions are typically introduced as a purely technical tool mainly to
prove the Central Limit Theorem. By proving the latter directly on the space
of distribution functions, we avoid technical steps which could distract from the
underlying mathematical ideas. Furthermore, the use of Lévy’s metric instead
of Kolmogorov’s metric has the advantage that the former always metricizes
convergence in distribution, whereas the latter only metricizes convergence in
distribution to continuous limit distributions (which admittedly is sufficient for
the proof of the Central Limit Theorem). Finally, our estimate of the rate
of convergence to the normal distribution w.r.t. Lévy’s metric is better than
the original estimate from Berry by far and even topical estimates w.r.t. Kol-
mogorov’s metric are not better than ours.
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Since the use of Lévy’s metric is not very common, we provide some historical
notes. In 1925, Lévy introduced a metric on the space of distribution functions
in a very informal way (cf. Lévy (1925) [11, p. 194 – 195, 199 – 200]). In fact,
he defined the distance between two distribution functions to be the Hausdorff
distance (without referring to it) between the graphs of these distribution func-
tions in R2 after filling the jumps with line segments. In 1937, Lévy put his
definition in concrete terms in a footnote (cf. Lévy (1937) [12, p. 241]) and, in
two different versions, in a note (cf. Fréchet (1937) [7, p. 333 – 334]). Unfortu-
nately, the most intuitive and least technical parts of Lévy’s work regarding his
metric (cf. Lévy (1925) [11, p. 194 – 195] and Fréchet (1937) [7, p. 333 – 334])
are almost completely disregarded in the literature. Hence it is not surprising
that some facts concerning Lévy’s metric – like the relation to the Hausdorff
distance (cf. Zolotarev (1997) [15, p. 64]) – have been reinvented. By mostly
presenting a definition without its simple geometrical interpretation in the lit-
erature, Lévy’s metric mainly got the status of being a curiosity, at best good
enough for exercises in probability books.

This paper is organized as follows. In Section 2, Lévy’s metric is defined and
elementary properties are proved. We also state some geometrical interpre-
tations of Lévy’s metric. Relations between Lévy’s metric, Fan’s metric, and
Kolmogorov’s metric are shown in Section 3. Some of these relations can be
used to improve estimates of Lévy’s metric and to show easily the well-known
fact that stochastic convergence implies convergence in distribution. In Section
4, we provide some new estimates for Lévy’s metric only using the absolute
moments of the random variables involved. One of these is used to estimate
the rate of convergence to the normal distribution w.r.t. Lévy’s metric and we
compare this result with existing ones.

2 Definition and basic properties

Let (Ω,A, P ) denote a probability space and for any random variable X let
FX denote the distribution function of X, i.e. FX(x) = P (X ≤ x). E(X) will
denote the expected value of X, V (X) will denote the variance of X.

Proposition 2.1 For two random variables X, Y : Ω → R, let dL(X, Y ) be
defined by

dL(X, Y ) := inf
{

h ≥ 0
∣∣∣ FX(x) ≤ FY (x + h) + h,

FY (x) ≤ FX(x + h) + h ∀x ∈ R
}

.

Then dL is a pseudo-metric on the space of random variables.

Definition 2.2 The pseudo-metric dL is called Lévy’s metric.

Usually, Lévy’s metric is defined on the set of distribution functions (where it
actually is a metric) instead on their corresponding random variables. Since
all estimates of Lévy’s metric in this article only use absolute moments of the
random variables involved, we have slightly changed the domain.
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The pseudo-metric dL has an intuitive geometrical interpretation. Both condi-
tions in the definition of Lévy’s metric can be rewritten as FY (x+h) ≥ FX(x)−h
and FY (x−h) ≤ FX(x)+h for all x ∈ R. If FY is continuous then, by the Mean
Value Theorem, these conditions guarantee that dL ≤ h if and only if FY meets
every square Sx,h with corners at (x − h, FX(x) + h) and (x + h, FX(x) − h)
for all x ∈ R. Generally, dL ≤ h if and only if the completed graph FY of the
distribution function FY , being defined as a subset of R2 by FY := {(x, y) ∈
R2 | y ∈ [limx′↗x FY (x′), limx′↘x FY (x′)]}, meets every square Sx,h, x ∈ R.
This condition is equivalent to the claim that the Hausdorff distance (w.r.t. the
metric d on R2, defined by d((x1, x2), (y1, y2)) := max{|x1 − y1|, |x2 − y2|}),
between the sets FX and FY ,

dHausdorff(FX , FY ) = max
{

max
x̄∈FX

min
ȳ∈FY

d(x̄, ȳ), max
ȳ∈FY

min
x̄∈FX

d(x̄, ȳ)
}

,

is smaller than or equal to h. Therefore, Lévy’s metric can be expressed as the
Hausdorff distance on the set of completed graphs of distribution functions, i.e.

dL(X, Y ) = dHausdorff(FX , FY ).
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Figure 1: Geometrical interpretation of Lévy’s metricProof [ofProposition2.1].Bytakingacloselookatthedefinitionof dL,weseedL∈[0,1],especiallynon-negativityof dL.Obviously, dL( X,X)=0.Sym-metrieholdsbydefinition.Fortheproofofthetriangularinequality,supposeh>dL( X,Y) ,h

>dL( Y,Z).Thenforall

x∈RFX ( x)≤FY( x+h)+h≤FZ( x+( h+h

))+( h+h

)andanalogously FZ( x)≤FX ( x+(h+ h))+(h+ h),i.e. dL( X,Z)≤h+ h

. HencedL( X,Z)≤dL( X,Y)+dL( Y,Z). 2

Lemma2.3 LetX,YbetworandomvariablesandM:=

{

h≥0∣∣

FX ( x)≤FY( x+h)+h,FY( x)≤FX ( x+h)+h∀x∈R}

.ThenM =[ dL( X,Y) ,∞[.Especially,theinfimuminthedefinitionof dL isattained.
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Proof. It is obvious that M ⊃ ]dL(X, Y ),∞[. By continuity from the right of
FX , resp. FY , we obtain dL(X, Y ) ∈ M . 2

We now collect some rather elementary results on Lévy’s metric.

Proposition 2.4 Let X, Y be two random variables. Then

(a) dL(X + c, Y + c) = dL(X, Y ) for all c ∈ R,

(b) dL(X, Y ) = dL(−X,−Y ),

(c) dL(X1 + X2, Y1 + Y2) ≤ dL(X1, Y1) + dL(X2, Y2),

(d) dL(X, Y ) ≤ dL(|X − Y |, 0).

Part (c) is already known (cf. Zolotarev (1967) [14, Lemma 1]) but our proof
is shorter and easier. The parts (a) and (b) can intuitively be seen by in-
terpreting Lévy’s metric geometrically as the Hausdorff distance between the
corresponding completed distribution functions since the geometrical relation
of the distribution functions w.r.t. each other does not change by the given op-
erations, translation and reflection w.r.t. the point (0, 1

2 ). Nevertheless, a formal
proof will be given below.

Proof.

(a) This follows directly from the definition of Lévy’s metric and from Fx+c(x)
= FX(x− c).

(b) We prove h > dL(X, Y ) implies h ≥ dL(−X,−Y ) and h > dL(−X,−Y )
implies h ≥ dL(X, Y ). Suppose h > dL(X, Y ). Then there exists an ε > 0
such that FX(x) ≤ FY (x+h−ε)+h−ε and FY (x) ≤ FX(x+h−ε)+h−ε
for all x ∈ R. Furthermore,

FX(x) ≤ FY (x + h− ε) + h− ε

⇔ P (−X ≥ −x) ≤ P (−Y ≥ −x− h + ε) + h− ε

⇔ P (−X < −x) ≥ P (−Y < −x− h + ε)− h + ε

⇔ P (−X < −x + h) + h ≥ P (−Y < −x + ε) + ε

⇒ F−Y (−x) ≤ F−X(−x + h) + h.

Analogously, we conclude F−X(−x) ≤ F−Y (−x+h)+h from h > dL(X, Y ),
i.e. h > dL(X, Y ) implies h ≥ dL(−X,−Y ). The reverse direction, i.e.
h > dL(−X,−Y ) implies h ≥ dL(X, Y ), can be obtained in the same way.

(c) Let hi := dL(Xi, Yi), i = 1, 2. Then

FX1+X2(x) =
∫

FX1(x− y) dFX2(y)

≤
∫

FY1(x− y + h1) + h1 dFX2(y)

=
∫

FX2(x− y + h1) dFY1(y) + h1

≤
∫

FY2(x− y + h1 + h2) + h2 dFY1(y) + h1

= FY1+Y2(x + h1 + h2) + h1 + h2
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Analogously, we obtain FY1+Y2(x) ≤ FX1+X2(x + h1 + h2) + h1 + h2 and
thus the desired inequality.

(d) From the triangular inequality follows

dL(X, Y ) ≤ dL(X − Y, 0) + dL(Y, Y ) = dL(X − Y, 0).

Since F|X−Y | ≤ FX−Y we find for every h ≥ dL(|X − Y |, 0)

(i) F0(x) ≤ F|X−Y |(x + h) + h ≤ FX−Y (x + h) + h for all x ∈ R.

The inequality

(ii) FX−Y (x) ≤ F0(x + h) + h for all x ≥ −h

is trivially true.
To prove

(iii) FX−Y (x) ≤ F0(x + h) + h for all x < −h,

we calculate, using F|X−Y |(h) ≥ F0(0)− h = 1− h,

sup
x<−h

FX−Y (x) = sup
x>h

P (Y −X ≥ x)

≤ sup
x>h

P (|X − Y | ≥ x)

= 1− inf
x>h

P (|X − Y | < x)

= 1− F|X−Y |(h)
≤ h

= F0(x + h) + h. 2

3 Relations between Lévy’s metric and other
probability metrics

Probability metrics are commonly introduced to metricize different types of con-
vergence. In this section, we mention Fan’s metric and Kolmogorov’s metric and
enlighten their relations to Lévy’s metric.

It is well-known that Lévy’s metric metricizes convergence in distribution (cf.
e.g. Galambos (1988) [8, Section 4.3]), i.e. for a sequence of random variables
Xn holds

FXn
(x) → FX(x) ∀ continuity points x of FX ⇐⇒ dL(Xn, X) → 0.

Another probability metric which will turn out to be nicely related to Lévy’s
metric is Fan’s metric dF which is defined on the set of random variables by (cf.
Fan (1944) [6] or Dudley (1989) [4, p. 226])

dF (X, Y ) := inf
{
h ∈ R | P (|X − Y | > h) ≤ h

}
.

It is well-known (cf. e.g. Dudley (1989) [4, Theorem 9.2.2]) that this metric
metricizes stochastic convergence, i.e.

∀ ε > 0 : P (|Xn −X| > ε) → 0 ⇐⇒ dF (Xn, X) → 0.
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A third metric of interest in our context is

dK(X, Y ) := ‖FX − FY ‖∞,

sometimes referred to as Kolmogorov’s metric. As it can easily be shown from
the definition, Kolmogorov’s metric metricizes convergence in distribution if and
only if the limit distribution function is continuous.

In the following proposition, we collect some relations between Lévy’s metric,
Fan’s metric and Kolmogorov’s metric. Part (c) is well-known and Part (d) has
already been stated (without proof) by Zolotarev (cf. Zolotarev (1997) [15, p.
65]).

Proposition 3.1 Let X, Y be random variables. Then

(a) dF (X, Y ) = dL(|X − Y |, 0).

(b) dL ≤ dF .

(c) dL ≤ dK .

(d) dK(X, Y ) ≤ (1 + ‖F ′X‖∞) · dL(X, Y ) if FX is differentiable.

Proof.

(a) One easily verifies that the inequalities in the definition of dL(|X − Y |, 0)
hold for all h > dF (X, Y ) and do not hold for all h < dF (X, Y ).

(b) This follows directly from (a) and Proposition 2.4 (d).

(c) Elementary calculations show that the inequalities in the definition of dL

hold for all h > dK(X, Y ).

(d) Let x ∈ R and suppose FY (x) > FX(x). Then, by differentiability of
FX , FX(x + dL(X, Y )) ≤ FX(x) + dL(X, Y ) · ‖F ′X‖∞ and, by definition
of Lévy’s metric and Lemma 2.3, FY (x) ≤ FX(x + dL(X, Y )) + dL(X, Y ).
Thus FY (x) ≤ FX(x) + (1 + ‖F ′X‖∞) · dL(X, Y ).
Analogously, we obtain FY (x) ≥ FX(x)− (1 + ‖F ′X‖∞) · dL(X, Y ) in the
case FY (x) < FX(x) from FX(x−dL(X, Y )) ≥ FX(x)−dL(X, Y ) ·‖F ′X‖∞
and FY (x) ≥ FX(x− dL(X, Y ))− dL(X, Y ). 2

These results have important implications. First, from Proposition 3.1 (b) di-
rectly follows the well-known fact that stochastic convergence implies conver-
gence in distribution. Second, Proposition 3.1 (b) can and will in Corollary 4.8
be used to adopt upper estimates for Fan’s metric between two random vari-
ables as some w.r.t. Lévy’s metric. Third, Proposition 3.1 (c) and (d) will help
to compare the rate of convergence of a sequence of random variables to the
standard normal distribution when one is given w.r.t. Kolmogorov’s metric and
the other in terms of Lévy’s metric.

We conclude this section with stating an upper estimate for Fan’s metric between
two random variables which in some cases will improve estimates w.r.t. Lévy’s
metric in the way remarked in the preceding paragraph. This estimate has the
advantage that it only uses the variances of the random variables.
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Proposition 3.2 Let X, Y be two random variables with E(X) = E(Y ). Then

dF (X, Y ) ≤ m+1
√

E(|X − Y |m) =
(
‖X − Y ‖m

) m
m+1

for all m ∈ N. Additionally, if X, Y are independent then

dF (X, Y ) ≤ 3
√

V (X) + V (Y ).

Proof. First, suppose dF (X, Y ) > 0. From the definition of Fan’s metric
follows dF (X, Y ) − ε < 1 − F|X−Y |(dF (X, Y ) − ε) for every ε ∈ ]0, dF (X, Y )[.
By the Generalized Chebyshev Inequality and by E(X) = E(Y ), we get 1 −
F|X−Y |(dF (X, Y )−ε) ≤ E(|X−Y |m)(dF (X, Y )−ε)−m. This implies dF (X, Y )
−ε < m+1

√
E(|X − Y |m) and since ε ∈ ]0, dF (X, Y )[ was chosen arbitrarily, we

obtain dF (X, Y ) ≤ m+1
√

E(|X − Y |m). This inequality obviously also holds for
dF (X, Y ) = 0. Now suppose X and Y are independent. Then

dF (X, Y ) ≤ 3
√

V (X − Y ) = 3
√

V (X) + V (Y ). 2

4 Main Results

The Central Limit Theorem in Lyapunov’s version states that whenever

1
σ3(Sn)

n∑
i=1

E
(
|Xi|3

)
−−−−→
n→∞

0 (4.1)

holds for a sequence (Xn)n∈N of independent identically distributed random vari-
ables with E(Xn) = 0 for all n ∈ N and having finite second and third absolute
moments then the normalized partial sum Sn

σ(Sn) , Sn :=
∑n

i=1 Xi, is asymptot-
ically standard normal distributed. The Berry–Esséen Theorem then provides
an estimate of the rate of convergence of the distributions of the sequence of
partial sums to the standard normal distribution in terms of Kolmogorov’s met-
ric depending on the converging term in formula (4.1) (cf. e.g. Berry (1941) [1,
Theorem 5]),

dK

(
Sn

σ(Sn)
, Y

)
≤ 3.6 · 4

√√√√ 1
σ3(Sn)

n∑
i=1

E
(
|Xi|3

)
, (4.2)

with Y being standard normal distributed. Obviously, the Berry–Esséen Theo-
rem implies the Central Limit Theorem.

In this section, we show that there is a Berry–Esséen type theorem for Lévy’s
metric which, compared to the standard theorem, yields better estimates. To
achieve this objective, we provide a class of upper estimates for Lévy’s metric
all referring to some absolute moments of the random variables.

We adopt a method of proving the Central Limit Theorem directly on the set of
distribution functions from Huber (cf. Huber (1975) [10, p. 49 – 53]) which ev-
idently originates from Lindeberg (cf. Lindeberg (1922) [13]). Huber estimated
the difference between FSn

and the distribution function of the standard normal
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distribution without using a probability metric. We incorporate this method in
Lemma 4.2, Proposition 4.3 and Theorem 4.9 but by adding the use of Lévy’s
metric we attach importance to the measurement of the speed of convergence to
the normal distribution. Furthermore, the class of estimates for Lévy’s metric
presented here depends on the use of sufficiently often differentiable approxima-
tions of indicator functions of the type x 7→ 1]−∞,x0](x), x0 ∈ R, and we show
optimal choices of such functions in Proposition 4.4 and Proposition 4.5.

As a preliminary result, we start with a special version of Taylor’s Theorem
and the Fundamental Theorem of Calculus. For a natural number m, denote
by Cm

b (R) the linear space of bounded, real-valued functions on R having m
bounded continuous derivatives. Furthermore, denote by Fm(R) the linear
subspace of Cm−1

b (R) consisting of all functions f : R → R with f (m)(x) ex-
isting for all x ∈ R except for a finite subset Af of R and with ‖f (m)‖∞ :=
‖f (m)|R\Af

‖∞ < ∞.

Lemma 4.1

(a) Fundamental Theorem of Calculus
Let f ∈ F1(R) and x0 ∈ R. Then

f(x) = f(x0) +
∫ x

x0

f ′(t) dt

holds for every x ∈ R.

(b) Taylor’s Theorem
Let f ∈ Fm(R) and x0 ∈ R. Then

f(x) =
m−1∑
k=0

f (k)(x0)
k!

(x− x0)k + Rm(x0, x)

holds for all x ∈ R with

‖Rm(x0, x)‖∞ ≤ ‖f (m)‖∞
m!

|x− x0|m.

Proof.

(a) If there isn’t any discontinuity point of f ′ between x0 and x the result
holds by the classical Fundamental Theorem of Calculus. Now suppose
there is exactly one discontinuity point a of f ′ between x0 and x, w.l.o.g.
suppose x0 < a < x. Then, applying the classical Fundamental Theorem
of Calculus and continuity of f , for sufficiently small ε > 0,

f(x) =
[
f(x)− f(a + ε)

]
+
[
f(a + ε)− f(a− ε)

]
+
[
f(a− ε)f(x0)

]
=
∫ x

a+ε

f ′(t) dt +
[
f(a + ε)− f(a− ε)

]
+
∫ a−ε

x0

f ′(t) dt

−−−→
ε→0

∫ x

x0

f ′(t) dt.

If x0 or x is a discontinuity point of f ′ itself this result remains true by
boundedness of f ′, resp. continuity of f . By induction, we obtain the
general result.
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(b) For a given f ∈ Fm(R), denote by Af ⊂ R the set of real numbers x
for which f (m)(x) does not exists. Furthermore, denote by α the minimal
distance between two elements in Af , α := min{|y−z| | y, z ∈ Af}. Define
the sequence (fn)n∈N in Cm

b (R) in the following way. Set

f (m)
n (x) := f (m)(x)

if miny∈Af
|x− y| ≥ α

2n and

f (m)
n (x) := λf (m)(y − α

2n ) + (1− λ)f (m)(y + α
2n )

if x = λ(y − α
2n ) + (1− λ)(y + α

2n ) for some y ∈ Af with |x− y| < α
2n and

λ ∈ [0, 1]. Furthermore, set recursively f
(k)
n (x) := f (k)(0) +

∫ x

0
f

(k−1)
n (t) dt

for each k = m − 1, . . . , 0. By construction, ‖f (m)
n ‖∞ ≤ ‖f (m)‖∞. From

(a) follows

‖f (m−1)
n −f (m−1)‖∞ ≤ |Af |· 12 ·

(
2·‖f (m−1)‖

)
·
(
2 α

2n

)
= 2·|Af |·‖f (m−1)‖ α

2n .

Hence, for every x ∈ R, the term |f (k)
n (x) − f (k)(x)|, k ∈ {0, . . . ,m − 1},

can be estimated only using 2 · |Af | · ‖f (m−1)‖ α
2n , k, and |x|. Thus, f

(k)
n

converges pointwise to f
(k)
n . Applying Taylor’s Theorem for every fn and

using pointwise convergence of f
(k)
n to f (k), k = 0, ..,m − 1, yields the

desired results. 2

Now we come to a fundamental lemma in this section.

Lemma 4.2

(a) Let f ∈ Fm(R), m ∈ N and let X1, . . . , Xn, Y1, . . . , Yn be pairwise in-
dependent random variables with E(Xk

i ) = E(Y k
i ), i = 1, . . . , n, k =

1, . . . ,m− 1. Then with Sn :=
∑n

i=1 Xi and Tn :=
∑n

i=1 Yi

∣∣E(f(Sn))− E(f(Tn))
∣∣ ≤ ‖f (m)‖∞

m!

(
n∑

i=1

E
(
|Xi|m

)
+

n∑
i=1

E
(
|Yi|m

))
.

(b) If especially n = 1 then (a) also holds if X1 and Y1 are dependent.

Proof. By Lemma 4.1,

f(X1 + · · ·+ Xn) =
m−1∑
k=1

f (k)(Sn−1)
k!

Xk
n + Rm(Sn−1, Sn) (4.3)

with

Rm(Sn−1, Sn) ≤ ‖f (m)‖∞
m!

|Xn|m.

Integrating both sides of Equation (4.3) yields (using independence in the case
n > 1)

E
(
f(Sn)

)
=

m−1∑
k=1

1
k!

E
(
f (k)(Sn−1)

)
E
(
Xk

n

)
+ E

(
Rm(Sn−1, Sn)

)



10 S. Maaß

and with E(Xk
i ) = E(Y k

i ) follows∣∣∣E(f(Sn−1 + Xn)
)
− E

(
f(Sn−1 + Yn)

)∣∣∣ ≤ ‖f (m)‖∞
m!

(
E
(
|Xn|m

)
+ E

(
|Yn|m

))
.

(4.4)
Using ∣∣∣E(f(Sn)

)
− E

(
f(Tn)

)∣∣∣
≤

n−1∑
i=0

∣∣∣∣∣∣E
f

( n−i∑
j=1

Xj +
n∑

j=n−i+1

Yj

)− E

f

( n−i−1∑
j=1

Xj +
n∑

j=n−i

Yj

)∣∣∣∣∣∣
and the corresponding analogous version of inequality (4.4), we get the desired
results of (a) and (b). 2

The subsequent proposition provides the announced class of upper estimates for
Lévy’s metric.

Proposition 4.3

(a) Let f ∈ Fm(R), m ∈ N, with

f(x) = 1 if x ≤ 0 , (4.5a)
f(x) ∈ [0, 1] if 0 < x < 1 , (4.5b)
f(x) = 0 if x ≥ 1 . (4.5c)

Let X1, . . . , Xn, Y1, . . . , Yn be pairwise independent random variables with
E(Xk

i ) = E(Y k
i ), i = 1, . . . , n, k = 1, . . . ,m − 1. Define Sn :=

∑n
i=1 Xi

and Tn :=
∑n

i=1 Yi. Then

dL(Sn, Tn) ≤ m+1

√√√√‖f (m)‖∞
m!

(
n∑

i=1

E
(
|Xi|m

)
+

n∑
i=1

E
(
|Yi|m

))
. (4.6)

(b) If especially n = 1 then (a) also holds if X1 and Y1 are dependent.

Proof. Define fx0,h : R → R by fx0,h(x) := f(x−x0
h ). To prove (a), resp. (b),

we use Lemma 4.2 (a), resp. (b), and obtain

FSn(x0)= E
(
1]−∞,x0] ◦ Sn

)
≤ E

(
fx0,h ◦ Sn

)
≤ E

(
fx0,h ◦ Tn

)
+
‖f (m)‖∞

hmm!

(
n∑

i=1

E
(
|Xi|m

)
+

n∑
i=1

E
(
|Yi|m

))

≤ E
(
1]−∞,x0+h] ◦ Tn

)
+
‖f (m)‖∞

hmm!

(
n∑

i=1

E
(
|Xi|m

)
+

n∑
i=1

E
(
|Yi|m

))

= FTn
(x0 + h) + h−m · ‖f

(m)‖∞
m!

(
n∑

i=1

E
(
|Xi|m

)
+

n∑
i=1

E
(
|Yi|m

))
.
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With

h̃ := m+1

√√√√‖f (m)‖∞
m!

(
n∑

i=1

E
(
|Xi|m

)
+

n∑
i=1

E
(
|Yi|m

))

follows FSn(x0) ≤ FTn(x0 + h̃)+ h̃ and due to symmetry we also obtain FTn(x0)
≤ FSn

(x0 + h̃) + h̃. By the definition of dL, we get (a), resp. (b). 2

The main feature of Proposition 4.3 is that Lévy’s metric can be estimated only
using absolute moments of the random variables involved. By choosing f in this
proposition in an optimal way, i.e. minimizing ‖f (m)‖∞ for a given m, we will be
able to provide a rate of convergence to the normal distribution, i.e. providing
the Berry–Esséen type theorem for Lévy’s metric.

We now put Proposition 4.3 (a) in concrete terms for m ∈ {1, 2, 3}. The oc-
curring regularities of the form of the functions used in the proof gives rise for
conjecturing that this result also holds for every natural number m (cf. Conjec-
ture 4.6).

Proposition 4.4 Let X1, . . . , Xn, Y1, . . . , Yn be pairwise independent random
variables satisfying E(Xk

i ) = E(Y k
i ) with i = 1, . . . , n, k = 1, . . . ,m − 1 and

m ∈ {1, 2, 3}. Then

dL(Sn, Tn) ≤ m+1

√√√√4m−1

m

(
n∑

i=1

E
(
|Xi|m

)
+

n∑
i=1

E
(
|Yi|m

))
. (4.7)

Proof. Define f1, f2, f3 : R → [0, 1] by

f1(x) := 1−
∫ x

0

40 · 0! · 1[0,1[(t1) dt1 , (4.8a)

f2(x) := 1−
∫ x

0

∫ t1

0

41 · 1! ·
(
1[0, 1

2 [ − 1[ 12 ,1[

)
(t2) dt2 dt1 , (4.8b)

f3(x) := 1−
∫ x

0

∫ t1

0

∫ t2

0

42 · 2! ·
(
1[0, 1

4 [∪[ 34 ,1[ − 1[ 14 , 3
4 [

)
(t3) dt3 dt2 dt1 . (4.8c)

By Lemma 4.1 (b), fi ∈ F i(R) and ‖f (i)
i ‖∞ = 4i−1 · (i − 1)!. Applying Propo-

sition 4.3 (a) finishes the proof. 2

The subsequent proposition answers the question of optimality of the result
given in the preceding proposition.

Proposition 4.5 The functions fi, i = 1, 2, 3, defined in (4.8) satisfy ‖f (i)
i ‖∞ =

inf{‖f (i)‖∞ | f ∈ F i(R) with (4.5)}. Therefore, Estimate (4.7) is the best pos-
sible concretion of Estimate (4.6).

Proof. Suppose g1 ∈ F1(R) satisfies the conditions (4.5). Then

0 = g1(1) = g1(0) +
∫ 1

0

g′1(t1) dt1 ≥ g1(0) +
∫ 1

0

−‖g′1‖∞ dt1 = 1− ‖g′1‖∞,
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i.e. ‖g′1‖∞ ≥ 1, hence f1 is an optimal function.
Now suppose g2 ∈ F2(R) satisfies the conditions (4.5). W.l.o.g., we can assume
that g2 satisfies the symmetric property g2(t) = 1− g2(1− t) since otherwise we
use the function g2 ∈ F2(R), defined by

g2(t) := 1
2 · g2(t) + 1

2 · (1− g2(1− t)).

It satisfies the conditions (4.5), g2(t) = 1 − g2(1 − t) and ‖g2
′′‖∞ ≤ ‖g′′2‖∞.

Then, using symmetry of g2, g2(0) = 1 and g′2(0) = 0,

1
2 = g2( 1

2 ) = g2(0) +
∫ 1

2

0

(
g′2(0) +

∫ t1

0

g′′2 (t2) dt2

)
dt1

≥ 1 +
∫ 1

2

0

∫ t1

0

−‖g′′2‖∞ dt2 dt1

= 1 +
∫ 1

2

0

−‖g′′2‖∞ · t1 dt1

= 1− 1
8 · ‖g

′′
2‖∞,

i.e. ‖g′′2‖∞ ≥ 4, hence f2 is an optimal function.
Finally, suppose g3 ∈ F3(R) satisfies the conditions (4.5). From the symmetric
property of g3, g3(t) = 1 − g3(1 − t) follows g′3(t) = g′3(1 − t) and g′′3 (t) =
−g′′3 (1− t), hence g′′3 ( 1

2 ) = 0. Furthermore, g′′3 (t) ≥ −‖g′′′3 ‖∞ · t, t ∈ [0, 1
4 ], and

g′′3 (t) ≥ ‖g′′′3 ‖∞ · (t− 1
2 ), t ∈ [ 14 , 1

2 ]. Therefore,

1
2 = g3( 1

2 ) = g3(0) +
∫ 1

2

0

(
g′3(0) +

∫ t1

0

g′′3 (t2) dt2

)
dt1

= 1 +
∫ 1

4

0

∫ t1

0

g′′3 (t2) dt2 dt1 +
∫ 1

2

1
4

∫ t1

0

g′′3 (t2) dt2 dt1

≥ 1 +
∫ 1

4

0

∫ t1

0

−‖g′′′3 ‖∞ · t2 dt2 dt1

+
∫ 1

2

1
4

(∫ 1
4

0

−‖g′′′3 ‖∞ · t2 dt2 +
∫ t1

1
4

−‖g′′′3 ‖∞ · (t2 − 1
2 ) dt2

)
dt1

= 1− 1
64 · ‖g

′′′
3 ‖∞,

i.e. ‖g′′′3 ‖∞ ≥ 32, hence f3 is an optimal function. 2

The Estimate (4.7) has also been proved by the author to be valid for some
more natural numbers m. Optimality of Estimate (4.7) has also been proved
for m = 4. This gives rise to formulate the subsequent conjecture.

Conjecture 4.6 Let X1, . . . , Xn and Y1, . . . , Yn be pairwise independent ran-
dom variables satisfying E(Xk

i ) = E(Y k
i ), i = 1, . . . , n, k = 1, . . . ,m − 1 and

m ∈ N. Then

dL(Sn, Tn) ≤ m+1

√√√√4m−1

m

(
n∑

i=1

E
(
|Xi|m

)
+

n∑
i=1

E
(
|Yi|m

))
.
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Before turning to our main theorem, we give two rather simple applications of
Proposition 4.4.

For a random variable X, denote by M(X) a median of X, i.e.

M(X) ∈
[
sup

{
x ∈ R | FX(x) ≤ 1

2

}
, inf

{
x ∈ R | FX(x) ≥ 1

2

}]
,

and by τ(X) := E(|X−M(X)|) the average absolute deviation from the median.
In insurance mathematics, a multiple ατ(X) of τ(X), α > 0, has been suggested
as a risk loading since the premium principle E(X)+ατ(X) can be represented
as a (non-additive) Choquet integral (cf. Denneberg (1994) [3, Exercise 5.4])
having favorable properties for applications. In situations like this one, where
the volatility parameter τ(X) is used, the following corollary of Proposition 4.4
may be of interest.

Corollary 4.7 Let X, Y be two random variables with M(X) = M(Y ). Then

dL(X, Y ) ≤
√

τ(X) + τ(Y ).

Proof. Since, by Proposition 2.4 (a), dL(X, Y ) = dL(X − MX, Y − MX) =
dL(X −MX, Y −MY ), the statement directly follows from Proposition 4.4 for
m = 1. 2

For m = 2, Proposition 4.4 gets the subsequent form.

Corollary 4.8 Let X, Y be two random variables with E(X) = E(Y ). Then

dL(X, Y ) ≤ 3

√
2
(
V (X) + V (Y )

)
. (4.9)

Additionally, if X, Y are independent then

dL(X, Y ) ≤ 3
√

V (X) + V (Y ).

The last assertion directly follows from Proposition 3.2 using Proposition 3.1 (b).

In his 1967 paper, Zolotarev proved a weaker upper estimate of Lévy’s metric
than given in (4.9) (cf. Zolotarev (1967) [14, Lemma 2]),

dL(X, Y ) ≤ 3

√
4 max

{
V (X), V (Y )

}
.

As the main application of Proposition 4.4 we now state a Berry–Esséen type
estimate of the rate of convergence to the normal distribution in terms of Lévy’s
metric.

Theorem 4.9 Let (Xn)n∈N be a sequence of independent random variables with
E(Xn) = 0, V (Xn) = σ2

n > 0 and E(|Xn|3) finite. Furthermore, let Y be a
standard normal distributed random variable which is independent of Xn for all
n ∈ N. Then

dL

(
Sn

σ(Sn)
, Y

)
≤ 1.93 · 4

√√√√ 1
σ3(Sn)

n∑
i=1

E
(
|Xi|3

)
.

This proof contains significant gaps or some errors since the use of Chebychev’s Inequality
seems to be applied by mistake for negative values.
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Proof. Let (Yn) be a sequence of independent standard normal distributed
random variables. Successively using that

∑n
i=1

σ(Xi)
σ(Sn)Yi is standard normal dis-

tributed, Proposition 4.4 with m = 3, σ3(Xi) ≤ E(|Xi|3) (Jensen’s Inequality)

and E(|Yi|3) =
√

8
π for all i ≤ n, we obtain

dL

(
Sn

σ(Sn)
, Y

)
= dL

(
Sn

σ(Sn)
,

n∑
i=1

σ(Xi)
σ(Sn)

Yi

)

≤ 4

√√√√ 16
3σ3(Sn)

(
n∑

i=1

E
(
|Xi|3

)
+

n∑
i=1

σ3(Xi)E
(
|Yi|3

))

≤ 4

√√√√ 16
3σ3(Sn)

(
n∑

i=1

E
(
|Xi|3

)(
1 + E

(
|Yi|3

)))

≤ 4

√√√√ 16
3σ3(Sn)

(
1 +

√
8
π

)( n∑
i=1

E
(
|Xi|3

))

≤ 1.93 · 4

√√√√ 1
σ3(Sn)

n∑
i=1

E
(
|Xi|3

)
. 2

A natural question arising now is how to compare the standard Berry–Esséen
estimate of the rate of convergence w.r.t. Kolmogorov’s metric to the one ob-
tained above. Using ‖F ′Y ‖∞ = (

√
2π)−1 for a standard normal distributed

random variable Y , Proposition 3.1 (c), (d) and Theorem 4.9 together yield
that an estimate in terms of Kolmogorov’s metric,

dK

(
Sn

σ(Sn)
, Y

)
≤ C · 4

√√√√ 1
σ3(Sn)

n∑
i=1

E
(
|Xi|3

)
,

is better than the one in Theorem 4.9 if C < 1.93, incomparable if C ∈
[1.93, 2.70], and worse if C > 2.70. Since C = 3.6 in Berry’s original estimate
(cf. Inequality (4.2), our estimate is an improvement. Breiman has mentioned,
that there exist unpublished calculations giving bounds as low as C = 2.05 (cf.
Breiman (1992) [2, p. 184]). This bound is incomparable to our result, but this
also means that it is not better than ours.

5 Conclusions

It remains as an open problem to prove Conjecture 4.6. Although all relevant
cases of this conjecture, i.e. those cases actually used in this article, have been
proved in Proposition 4.4, it would be a nice result. Another task remaining to
do is to provide a rate of convergence for sequences of independent distributed
random variables (having certain additional properties) converging in distribu-
tion to a Poisson distributed random variable. Such a result cannot be expressed
in terms of Kolmogorov’s metric since the limit distribution is not continuous
and would therefore expose the advantages of Lévy’s metric.
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