A PHILOSOPHICAL FOUNDATION OF NON-ADDITIVE MEASURE AND PROBABILITY

Sebastian Maaß

Universität Bremen sebastian@maass.name

Idea: (cf. Murofushi and Sugeno [1989], [1990])

Non-additivity of a set function (fuzzy measure) μ expresses a relation between sets. Usually, relations between sets are modelled in a set theoretic way by intersection:

A is related to B

 $A \quad B = .$

Idea: (cf. Murofushi and Sugeno [1989], [1990])

Non-additivity of a set function (fuzzy measure) μ expresses a relation between sets. Usually, relations between sets are modelled in a set theoretic way by intersection:

A is related to
$$B$$
 A $B = ...$

$$A \quad B = .$$

Here, for a non-additive set function μ and disjoint sets A and B,

$$A$$
 is related to B

$$\mu(A) + \mu(B) - \mu(A \quad B) = 0.$$

Idea: (cf. Murofushi and Sugeno [1989], [1990])

Non-additivity of a set function (fuzzy measure) μ expresses a relation between sets. Usually, relations between sets are modelled in a set theoretic way by intersection:

A is related to
$$B$$
 A $B = ...$

$$A \quad B = 1$$

Here, for a non-additive set function μ and disjoint sets A and B,

$$A$$
 is related to B

A is related to B
$$\mu(A) + \mu(B) - \mu(A - B) = 0.$$

The value $\mu(A) + \mu(B) - \mu(A - B)$ can be interpreted as a measure of the strength of this relation.

Idea: (cf. Murofushi and Sugeno [1989], [1990])

Non-additivity of a set function (fuzzy measure) μ expresses a relation between sets. Usually, relations between sets are modelled in a set theoretic way by intersection:

A is related to
$$B$$
 A $B = ...$

$$A \quad B = 1$$

Here, for a non-additive set function μ and disjoint sets A and B,

$$A$$
 is related to B

A is related to B
$$\mu(A) + \mu(B) - \mu(A - B) = 0.$$

The value $\mu(A) + \mu(B) - \mu(A - B)$ can be interpreted as a measure of the strength of this relation.

Formalization of this idea <u>Aim:</u>

Method: Quasi analysis

Carnap [1923], [1928]

Analytic descriptions can be transformed into relation descriptions:

" X has the constituent/property x"

is formally equivalent to

"X belongs to the class of all objects having the constituent/property x".

Carnap [1923], [1928]

Analytic descriptions can be transformed into relation descriptions:

" X has the constituent/property x"

is formally equivalent to

"X belongs to the class of all objects having the constituent/property x".

Analysis = the process of decomposing a complex object into its parts

= process of identifying equivalence classes (representing these parts) on the basis of a real relation description (X is related to Y by definition if they have joint constituents)

Carnap [1923], [1928]

Analytic descriptions can be transformed into relation descriptions:

" X has the constituent/property x"

is formally equivalent to

"X belongs to the class of all objects having the constituent/property x".

Analysis = the process of decomposing a complex object into its parts

process of identifying equivalence classes
 (representing these parts)
 on the basis of a real relation description
 (X is related to Y by definition if they have joint constituents)

If the relation descrition is purely formal, then Carnap calls this process quasi analysis and the constituted classes quasi constituents or quasi properties.

Carnap [1923], [1928]

Quasi analysis is the process of constituting quasi constituents or quasi properties from a relation description holding over indivisible unities or propertyless points [cf. Carnap, 1928, §70].

"Quasi analysis is a synthesis in the linguistic garb of an analysis." [Carnap, 1928, §74].

Carnap [1923], [1928]

Quasi analysis is the process of constituting quasi constituents or quasi properties from a relation description holding over indivisible unities or propertyless points [cf. Carnap, 1928, §70].

"Quasi analysis is a synthesis in the linguistic garb of an analysis." [Carnap, 1928, §74].

Carnap's motivation: Logical construction of the world

indivisible unities: elementary experiences

relation description: part similarity

Carnap [1923], [1928]

The setting:

set of basis elements

A 2 equivalence classes over

Generally, the equivalence classes have to be derived from a given relation description.

Carnap [1923], [1928]

The setting:

set of basis elements

A 2 equivalence classes over

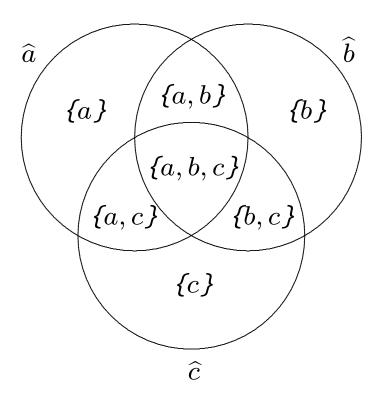
Generally, the equivalence classes have to be derived from a given relation description.

The quasi analysis:

A class A A is called a <u>quasi property</u> of each of its elements. If A contains enough sets, every ω can be identified with the collection of its quasi properties, $\widehat{\omega} := \{A \ A / \omega \ A\}$.

QUASI ANALYSIS OF MEASURABLE SPACES

For $:= \{a, b, c\}$ and A := 2 the quasi analysis can geometrically easily be illustrated:



TRANSFORMING SETS

Let be a set and A a $(\sigma$ -)algebra. Assign to every set of elements A Athe set of quasi properties of its elements:

$$\hat{A} := \{B \mid A \mid \omega \mid A : B \mid \omega\} = \{B \mid A \mid B \mid A = \}$$

Then for $A, B \in A$

(a)
$$\hat{}$$
 = (c) $A B$

(e)
$$\widehat{A}$$
 \widehat{B} \widehat{A} \widehat{B}

(a)
$$\widehat{=}$$
 (c) \widehat{A} \widehat{B} \widehat{A} \widehat{B} (e) $\widehat{\widehat{A}}$ \widehat{B} \widehat{A} \widehat{B} (b) $\widehat{=}$ $\widehat{A} \setminus \{\}$ (d) $\widehat{\widehat{A}}$ \widehat{B} \widehat{A} \widehat{B} (f) $\widehat{\widehat{A} \setminus B}$ $\widehat{A} \setminus \widehat{B}$

TRANSFORMING SETS

Let be a set and A a $(\sigma$ -)algebra. Assign to every set of elements A A the set of quasi properties of its elements:

$$\hat{A} := \{B \mid A \mid \omega \mid A : B \mid \omega\} = \{B \mid A \mid B \mid A = \}$$

Then for $A, B \in A$

(a)
$$\widehat{A} = \{ (c) \ A \ B \ \widehat{A} \ \widehat{B} \}$$
 (e) $\widehat{A \ B} = \widehat{A} \ \widehat{B}$ (b) $\widehat{A \ B} = \widehat{A} \ \widehat{B} = \widehat{A} \ \widehat{A} \ \widehat{A} \ \widehat{B} = \widehat{A} \ \widehat{A} \ \widehat{A} \ \widehat{A} \ \widehat{B} = \widehat{A} \ \widehat{A$

(b)
$$\widehat{A} = A \setminus \{ \}$$
 (d) $\widehat{A} \widehat{B} = \widehat{A} \widehat{B}$ (f) $\widehat{A} \setminus \widehat{B} \widehat{A} \setminus \widehat{B}$

Remark:

- (i) $A \quad B = \text{implies } \widehat{A} \quad \widehat{B} = \text{, i.e. if } A \text{ and } B \text{ are related in a set theoretic}$ way then \widehat{A} and \widehat{B} also are.
- (ii) A B \widehat{A} \widehat{B} for all A,B=, i.e. even (non-empty) disjoint sets have joint quasi properties.

TRANSFORMING SET FUNCTIONS

Theorem:

Let be a finite set, and A an algebra over .

- (a) For any set function μ on A there exists a unique (signed) measure $\widehat{\mu}$ on the σ -algebra $\widehat{A} := \sigma\{\widehat{A} \mid A = A\}$ over $\widehat{}$ satisfying $\widehat{\mu}(\widehat{A}) = \mu(A)$ for all A = A.
- (b) The measure $\hat{\mu}$ is non-negative if and only if μ is totally alternating.

TRANSFORMING SET FUNCTIONS

Theorem:

Let be a finite set, and A an algebra over

- (a) For any set function μ on A there exists a unique (signed) measure $\widehat{\mu}$ on the σ -algebra $\widehat{A} := \sigma\{\widehat{A} \mid A = A\}$ over $\widehat{}$ satisfying $\widehat{\mu}(\widehat{A}) = \mu(A)$ for all A = A.
- (b) The measure $\hat{\mu}$ is non-negative if and only if μ is totally alternating.

Remark: Part (a) implies

- (i) $\mu(A) = \sum_{B=A=1} \widehat{\mu}(\{B\})$, i.e. μ measures the quasi properties of a set A and assigns this value to A.
- (ii) $\widehat{\mu}(\widehat{A} \quad \widehat{B}) = \widehat{\mu}(\widehat{A}) + \widehat{\mu}(\widehat{B}) \widehat{\mu}(\widehat{A} \quad \widehat{B}) = \mu(A) + \mu(B) \mu(A \quad B)$, i.e. our motivating idea of interpreting $\mu(A) + \mu(B) \mu(A \quad B)$ as a measure of the strength of a relation between A and B is now formalized.

TRANSFORMING FUNCTIONS

The following equations hold for any definition of \widehat{f} and finite μ ,

$$\int f \, d\mu = \int_{0} \mu(\{f = x\}) \, dx + \int_{-}^{0} \mu(\{f = x\}) - \mu(-) \, dx$$

$$= \int_{0} \widehat{\mu}(\{\widehat{f} = x\}) \, dx + \int_{-}^{0} \widehat{\mu}(\{\widehat{f} = x\}) - \widehat{\mu}(\widehat{-}) \, dx,$$

$$\int_{\widehat{-}} \widehat{f} \, d\widehat{\mu} = \int_{0} \widehat{\mu}(\{\widehat{f} = x\}) \, dx + \int_{-}^{0} \widehat{\mu}(\{\widehat{f} = x\}) - \widehat{\mu}(\widehat{-}) \, dx.$$

To obtain $\int f d\mu = \int \widehat{f} d\widehat{\mu}$, we need $\{\widehat{f} \mid x\} = \{\widehat{f} \mid x\}$. For $A \in \mathcal{A}$,

$$A \quad \{\widehat{f} \quad x\} = \overline{u_A}(f \quad x) = 1 \qquad \int f d\overline{u_A} \quad x.$$

We therefore define $\widehat{f}(A) := \int f d\overline{u_A}$ and obtain $\{\widehat{f} \mid x\} = \{\widehat{f} \mid x\}$. Hence,

$$\int f d\mu = \int \widehat{f} d\widehat{\mu}.$$

EXAMPLE: VOTING SYSTEMS

The setting: P_1,\dots,P_n set of players $2^{\{P_1,\dots,P_n\}} \text{ set of possible coalitions}$ $\mu \text{ characteristic function of the game,}$ $\mu(C) := 1 \text{ if } C \text{ is a winning coalition, 0 else}$

<u>Definition</u>: Banzhaf Power Index for players, BPI(P):

$$\mathsf{BPI}(P) := \frac{\# \text{ of times player P is critical}}{\# \text{ of times any player is critical}}$$

$$= \frac{\sum_{C} \{P\} = \mu(C \{P\}) - \mu(C)}{\sum_{i=1}^{n} \sum_{C} \{P\} = \mu(C \{P\}) - \mu(C)}$$

$$= \frac{\sum_{C} \{P\} = \mu(\widehat{\{P\}} \setminus \widehat{C})}{\sum_{i=1}^{n} \sum_{C} \{P\} = \mu(\widehat{\{P\}} \setminus \widehat{C})}$$

Interpretation: For any coalition C and any player P / C the quasi property $\widehat{\{P\}} \setminus \widehat{C}$ is the the marginal power contribution of P to C.

EXAMPLE: MULTI-CRITERIA DECISION MAKING

cf. Grabisch [1996]

The setting (simplified):

$$\{C_1,\ldots,C_n\}$$
 set of criterias

$$a_1, \ldots, a_m : \{C_1, \ldots, C_n\}$$
 O

set of acts mapping each criteria to an outcome o O

Example:

$$\{M, P, L\}$$
 set of subjects (mathematics, physics, literature)

$$S_1, \ldots, S_n : \{M, P, L\}$$
 $\{1, \ldots, 6\}$ set of student's grade functions

Aim: Rank students on the basis of their grades.

Standard method: Weight subjects and calculate the weighted mean.

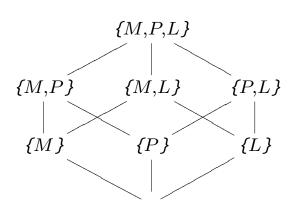
Problem: Criterias have to be redundancy-free,

otherwise redundancies are overestimated.

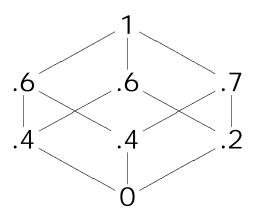
EXAMPLE: MULTI-CRITERIA DECISION MAKING

cf. Grabisch [1996]

Algebra:



Set function:

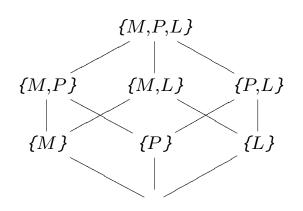


Function:

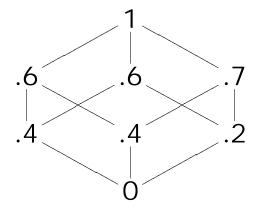
EXAMPLE: MULTI-CRITERIA DECISION MAKING

cf. Grabisch [1996]

Algebra:

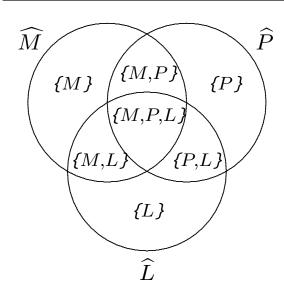


Set function:

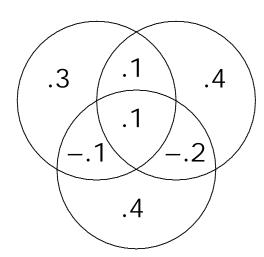


Function:

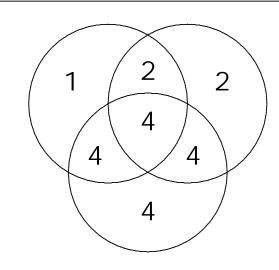
Transformed domain:



<u>Transformed set function:</u>



Transformed function:



INDEPENDENCE

<u>Definition:</u> Two events A and B are called $(\mu$ -)independent i \widehat{A} and \widehat{B} are $(\widehat{\mu}$ -)independent,

$$\widehat{\mu}(\widehat{A} \quad \widehat{B}) = \widehat{\mu}(\widehat{A}) \cdot \widehat{\mu}(\widehat{B})$$

or, equivalently since $\widehat{\mu}(\widehat{A} - \widehat{B}) = \widehat{\mu}(\widehat{A}) + \widehat{\mu}(\widehat{B}) - \widehat{\mu}(\widehat{A} - \widehat{B})$, i

$$\mu(A) + \mu(B) - \mu(A \quad B) = \mu(A) \cdot \mu(B).$$

Two random variables X and Y are called $\underline{(\mu\text{-})}$ independent in \widehat{X} and \widehat{Y} are $(\widehat{\mu}\text{-})$ independent,

$$\widehat{\mu}\Big(\{\widehat{X} \quad U\} \quad \{\widehat{Y} \quad V\}\Big) = \widehat{\mu}\Big(\{\widehat{X} \quad U\}\Big) \cdot \widehat{\mu}\Big(\{\widehat{Y} \quad V\}\Big)$$

or, equivalently, i

$$\mu(X \cup U) + \mu(Y \cup V) - \mu(X \cup U \text{ or } Y \cup V) = \mu(X \cup U) \cdot \mu(Y \cup V).$$

CONDITIONING AND PRODUCTS

<u>Definition</u>: Given a non-additive probability μ and two events A and B with $\mu(B)=0$ the <u>conditional non-additive probability</u> of A given B is defined as the conditional probability of \widehat{A} given \widehat{B}

$$\mu(A \mid B) := \widehat{\mu}(\widehat{A} \mid \widehat{B})$$

$$= \frac{\widehat{\mu}(\widehat{A} \mid \widehat{B})}{\widehat{\mu}(\widehat{B})}$$

$$= \frac{\mu(A) + \mu(B) - \mu(A \mid B)}{\mu(B)}.$$

Let μ_1 and μ_2 be two non-additive set functions.

Then their product μ_1 $\mu_2: A_1 \times A_2$ \mathbb{R} is defined by

$$\mu_1 \quad \mu_2(A \times B) := \widehat{\mu}_1 \quad \widehat{\mu}_2(\widehat{A \times B}).$$

CONCLUSION AND OUTLOOK

Non-additivity of set functions can often be explained by the interpretation that not all relations between sets have been modelled in a set theoretic way.

CONCLUSION AND OUTLOOK

Non-additivity of set functions can often be explained by the interpretation that not all relations between sets have been modelled in a set theoretic way.

The presented transform separates relations and evaluations and thus makes it possible to introduce concepts from standard measure and probability theory to the non-additive theory in a natural way.

CONCLUSION AND OUTLOOK

Non-additivity of set functions can often be explained by the interpretation that not all relations between sets have been modelled in a set theoretic way.

The presented transform separates relations and evaluations and thus makes it possible to introduce concepts from standard measure and probability theory to the non-additive theory in a natural way.

Result: Non-additivity does not necessarily mean a generalization of a theory originally built up on $(\sigma$ -)additive measures. It can just mean that the domain of was chosen too small to express all possible relations that have to be modelled.