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Idea: (cf. Murofushi and Sugeno [1989], [1990])

Non-additivity of a set function (fuzzy measure) u expresses a relation
between sets. Usually, relations between sets are modelled in a set
theoretic way by intersection:

A is related to B [T T AnBE L]

Here, for a non-additive set function p and disjoint sets A and B,

Ais related to B T 1T k(A +u(B)—u(A CH) EO0.

The value u(A) + u(B) — u(A [CH) can be interpreted as a measure
of the strength of this relation.

Aim: Formalization of this idea

Method: Quasi analysis
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THE QUASI ANALYSIS
Carnap [1923], [1928]

Analytic descriptions can be transformed into relation descriptions:

“X has the constituent/property =’

Is formally equivalent to

“X belongs to the class of all objects having the constituent/property x™.

Analysis the process of decomposing a complex object into its parts

= process of identifying equivalence classes
(representing these parts)
on the basis of a real relation description
(X is related to Y by definition if they have joint constituents)

If the relation descrition is purely formal, then Carnap calls this process
quasi analysis and the constituted classes quasi constituents or quasi properties.
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Carnap [1923], [1928]

Quasi analysis is the process of constituting quasi constituents or guasi prop-
erties from a relation description holding over indivisible unities or propertyless
points [cf. Carnap, 1928, 370].

“Quasi analysis is a synthesis in the linguistic garb of an analysis.”
[Carnap, 1928, §74].
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Quasi analysis is the process of constituting quasi constituents or guasi prop-
erties from a relation description holding over indivisible unities or propertyless
points [cf. Carnap, 1928, 370].

“Quasi analysis is a synthesis in the linguistic garb of an analysis.”
[Carnap, 1928, §74].

Carnap’s motivation: Logical construction of the world

indivisible unities: elementary experiences
relation description: part similarity
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THE QUASI ANALYSIS
Carnap [1923], [1928]

The setting:

Q set of basis elements
A [ 2% equivalence classes over Q

Generally, the equivalence classes have to be derived from a given relation
description.

The quasi analysis:

A class A Al is called a quasi property of each of its elements. If A contains
enough sets, every w can be identified with the collection of its quasi properties,
w:={A | w A}




QUASI ANALYSIS OF MEASURABLE SPACES

For Q := {a,b,c} and A := 22 the quasi analysis can geometrically easily be
illustrated:
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the set of quasi properties of its elements:

A={BLA|dCA:BLul={BLCA|BnAE [H
Then for A, B

() [=F [ (c) A[Bl- A Bl () AnB [AInB

———

(b)) Q=A\{[}H (d ACRB=ATCH (f) A\B CANB



TRANSFORMING SETS

Let Q be a set and A a (o-)algebra. Assign to every set of elements A A
the set of quasi properties of its elements:

A={BLA|dCA:BLul={BLCA|BnAE [H
Then for A, B

() [=F [ (c) A[Bl- A Bl () AnB [AInB
(b) QO=A\{}1 () A[B=A[CR (f) A\ B [CANB
Remark:

(i) An B & Cimplies An B & [i.e. if A and B are related in a set theoretic
way then A and B also are.

(ii) A CBIAn B for all A, B & [i.e. even (non-empty) disjoint sets have joint
quasi properties.
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Theorem:
Let Q be a finite set, and A an algebra over Q.

(a) For any set function p on A there exists a unique (signed) measure i on
the o-algebra A := o{A | A A} over Q satisfying (ﬁ) = n(A) for all
A [CA.

(b) The measure i IS non-negative if and only if u Is totally alternating.



TRANSFORMING SET FUNCTIONS

Theorem:
Let Q be a finite set, and A an algebra over Q.

(a) For any set function p on A there exists a unique (signed) measure i on
the o-algebra A := o{A | A A} over Q satisfying (ﬁ) = n(A) for all
A [CA.

(b) The measure i IS non-negative if and only if u Is totally alternating.

Remark: Part (a) implies

() w(A) = X pnass({B)),

I.e. u measures the quasi properties of a set A and assigns this value to A.

(i) A(An B) = i(A) + i(B) — i(A [B) = u(A) + w(B) — u(A CH),
I.e. our motivating idea of interpreting u(A) + u(B) —u(A LB) as a measure

of the strength of a relation between A and B is now formalized. .



TRANSFORMING FUNCTIONS

The following equations hold for any definition of f and finite L,
oo 0]
/Q fdu = /O p@f =P do+ [ u@f =P — Q) da
oo o 0 _
= /O AT =P de+ [ S =P — Q) dr,
oo . 0 . _—
/O pdf = aPdo+ [ adf =2} — (@) de.

_ fdi
/Qf )

To obtain [f du = [5 fdfi, we need {f =2} = {f = 2}. For A A,

Af=2 [(THEN{f=2}E O =2) = 1 ElzyélzdeZx.

/\

We therefore define f(A) := [o fduz and obtain {f =z} = {f = «}.
Hence,

o= i



EXAMPLE: VOTING SYSTEMS

The setting: Pq,...,FP, set of players

2P, Pn}  set of possible coalitions
L4 characteristic function of the game,
w(C) ;=1 if C is a winning coalition, O else

Definition: Banzhaf Power Index for players, BPI(P):

# of times player P is critical
# of times any player is critical

>ongpyerH(C LIP}) — u(C)
>i=1 2on{rye=ta(C LIP}) — p(C)

2.Cn{P}= #{PI\C)
Y1 Yengpyert{PINC)

BPI(P) :=

Interpretation: For any coalition C' and any player P J_d the quasi property
{P}\ C is the the marginal power contribution of P to C.
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EXAMPLE: MULTI-CRITERIA DECISION MAKING
cf. Grabisch [1996]

The setting (simplified):

{C1,...,Cr} set of criterias

al,...,am:{01,...,0n} - O
set of acts mapping each criteria to an outcome o

Example:

{M, P, L} set of subjects (mathematics, physics, literature)

S1,....5,:{M,P,L} - {1,...,6}
set of student’s grade functions

Aim: Rank students on the basis of their grades.

Standard method: Weight subjects and calculate the weighted mean.

Problem: Criterias have to be redundancy-free,
otherwise redundancies are overestimated.
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EXAMPLE: MULTI-CRITERIA DECISION MAKING

cf. Grabisch [1996]

Algebra:

{M,P,L}

A N

{M,P} {M,L} {P,L}

<

{M} {P} {L}

~I-

Set function: Function:

w |M P L
f(w)‘l 2 4
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EXAMPLE: MULTI-CRITERIA DECISION MAKING
cf. Grabisch [1996]

Algebra: Set function: Function:
{M,P,L} 1
{MP}/{ML}\{PL} 6/6\7 w |M P L
> > < 1 2 4
{0} {P} {L} 4 A4 2

Transformed domain: Transformed set function: Transformed function:

A A
. \Y/
L e

12




INDEPENDENCE

Definition: Two events A and B are called (u-)independent iL_A and B are
(11-)independent,

i(An B) = i(A) - i(B)
or, equivalently since (A n B) = f(A) + i(B) — (A CH), i1

p(A) + p(B) — p(A LB) = u(A) - n(B).

Two random variables X and Y are called (u-)independent iC X and Y are
(zi-)independent,

A({X Ty n {y 0W) = a({X ) - a({y Cuy)
or, equivalently, 1 1

p(X LD + p(Y [LY) — p(X or Y [ V) = p(X L) p(y LY.
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CONDITIONING AND PRODUCTS

Definition: Given a non-additive probability x and two events A and B with
u(B) & 0 the conditional non-additive probability of A given B is defined as
the conditional probability of A given B

uw(A|B) = [(A|B)
i(An B)
a(B)
p(A) + p(B) —p(A IiH).
pw(B)

Let 491 and po be two non-additive set functions.
Then their product puq Lud : A1 < Ay - R is defined by

p1 (A < B) := iy [7id(A < B).
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CONCLUSION AND OUTLOOK

Non-additivity of set functions can often be explained by the interpretation
that not all relations between sets have been modelled in a set theoretic way.
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CONCLUSION AND OUTLOOK

Non-additivity of set functions can often be explained by the interpretation
that not all relations between sets have been modelled in a set theoretic way.

The presented transform separates relations and evaluations and thus makes it
possible to introduce concepts from standard measure and probability theory
to the non-additive theory in a natural way.

Result: Non-additivity does not necessarily mean a generalization of a theory
originally built up on (o-)additive measures.
It can just mean that the domain Q of was chosen too small
to express all possible relations that have to be modelled.
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