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Lévy’s metric

von Sebastian Maaß

Dissertation

zur Erlangung des Grades eines Doktors der Naturwissenschaften
– Dr. rer. nat. –

Vorgelegt im Fachbereich 3 (Mathematik & Informatik)
der Universität Bremen

im Juli 2003
Revidierte Fassung September 2003



Datum des Promotionskolloquiums: 8.10.2003

Gutachter: Prof. Dr. Dieter Denneberg (Universität Bremen)
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Preface

This thesis consists of three loosely related parts. In the first part, we exam-
ine a class of non-linear functionals which we call exact. The second part is
devoted to a continuous linear representation of non-additive set functions
and non-linear functionals. Finally, in the third part, we provide an estimate
of the speed of convergence to the normal distribution in the Central Limit
Theorem which improves existing results.
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functions, such a result is already known as “basic probability assignment”
in the Dempster-Shafer theory of evidence in the discrete case or as Möbius
transform in the general case. We provide a non-linear homeomorphism be-
tween an arbitrary linear space of non-linear functionals with a distinguished
convex subset on the one hand and a linear space of continuous linear func-
tionals on the other hand such that the convex set is mapped onto the set
of normalized monotone linear functionals. We pick up an idea first stated
by Shafer in 1979 using Choquet’s Theorem for introducing his transform.
Since the presented result does not depend on special properties of the do-
main of the functionals being transformed, also set functions are included
in our investigations as they can be interpreted as functionals on the set
of indicator functions. For the application of a special version of Choquet’s
Theorem in our situation, it suffices to use a very general property shared by
a number of classes of functionals like most classes of cooperative games or
the class of coherent risk measures – they can be characterized as functionals
preserving certain linear inequalities. Our result allows to switch between
the non-additive theories and the much more elaborated theories of linear
functionals like integration theory and functional analysis. Some outlines of
these results have already been presented at the international conferences
RUD 2003 and ISIPTA ’03.

In the third chapter, we deal with a classical problem in probability the-
ory by estimating the speed of convergence to the normal distribution in
the Central Limit Theorem. In contrast to the Berry–Esséen Theorem, we
seem to be the first to use Lévy’s metric instead of Kolmogorov’s metric for
this estimate while parallely avoiding characteristic functions. Unlike Kol-
mogorov’s metric, Lévy’s metric has not become very popular. Though it has
a simple geometrical interpretation and can – in contrast to Kolmogorov’s
metric – be used to metricize convergence in distribution in general, it has
been almost completely disregarded in literature and got the status of be-
ing a curiosity, at best good enough for exercises in probability books. We
provide some new estimates for Lévy’s metric which only use the absolute
moments of the random variables involved. One of these estimates is used
to obtain a Berry–Esséen type theorem and we show that our result in some
cases improves the existing ones.
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Chapter 1

Exact Functionals and their Core

1.1 Introduction

Many classes of functionals and set functions are used to represent the dif-
ferent types of risk and uncertainty in utility, risk and decision theory. They
show considerable similarities in their structure, their methods of use and
the results obtained. The present chapter provides a general mathematical
setting suitable for most approaches. We consider two classes of functionals
which are defined on an arbitrary non-empty subset of the linear space B(2Ω)
of bounded real-valued functions. The class of exact functionals contains the
classes of

• exact cooperative games (Schmeidler 1972 [35])

• coherent lower previsions (Walley 1991 [39])

• coherent risk measures (Artzner et al. 1999 [2]), (Delbaen 2002 [10])

• maxmin expected utility functionals (Gilboa and Schmeidler 1989 [19]).

The class of exactifiable functionals generalizes the classes of

• balanced cooperative games (Schmeidler 1972 [35])

• previsions avoiding sure loss (Walley 1991 [39]).

Methods and results of these different theories appear in a generalized form,
relations between these theories are elaborated and several new results are
presented. It turns out that the structural assumptions on the domain made

1
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in some theories mentioned above (e.g. being an algebra or a linear space)
are mathematical unnecessary restrictions.

This chapter is organized as follows. In Section 2, exact and exactifiable
functionals are defined and both types are characterized by a norm. For
exact functionals, we present an extension theorem of Hahn-Banach type.
Relations to the theories mentioned above are established in Section 3. Ex-
act functionals will also be proved to be interpretable as a generalization of
superadditive Choquet integrals where comonotonic additivity is relaxed to
constant additivity. In Section 4, we introduce exact operators as a canon-
ical method to transform the domains of exact functionals. In the special
case where the range of an exact operator consists of bounded functions on
a set of exact functionals, we obtain a result (Theorem 1.4.3) which can be
interpreted as a general construction method for exact functionals. In the
central Section 5, exact and exactifiable functionals are analyzed with func-
tional analytical methods. The core concept mainly known from cooperative
game theory is introduced for functionals and serves simultaneously as a ba-
sis for an analysis with methods from measure and integration theory. In
the special case of exact Choquet integrals, there arises an interesting con-
nection between the core of the integral and the core of the corresponding
set function. Finally, we show that analogously to game theory continuity
properties of exact functionals correspond directly to those of the elements
of the core.

1.2 Definition and basic properties

Throughout this chapter, Ω denotes a non-empty set, 2Ω the power set of
Ω, A an algebra in 2Ω, B(A) the Banach space spanned by the indicator
functions {1A|A ∈ A} with the sup norm ‖ · ‖∞ and M a non-empty subset
of B(2Ω). A real-valued functional Γ on a linear space S ⊂ B(2Ω) is called
superlinear if it is superadditive (i.e. Γ(f + g) ≥ Γ(f) + Γ(g)) and positively
homogeneous. It is called constant additive if Γ(f + c) = Γ(f) + Γ(c) for all
c, f ∈ S, c constant. Constant additivity is widely denoted as translation
invariance but we prefer the first notation since this property is similar to
comonotonic additivity of the Choquet integral.
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Definition 1.2.1 Let Γ be the restriction to M of a monotone, superlinear,
constant additive functional Γ′ : B(2Ω) → R. Then Γ is called exact and Γ′

an exact extension of Γ.
Let Γ : M → R be a functional that can be dominated by an exact functional
Γ′ : M → R. Then Γ is called exactifiable and Γ′ an exactification of Γ.

For a real-valued functional Γ : B(A) → R, one can define the conjugate
functional Γ : B(A) → R by Γ(f) := −Γ(−f). This definition is analo-
gous to that of conjugate set functions. If Γ is a Choquet integral then Γ is
the Choquet integral w.r.t. the conjugate set function. By this conjugation
we get the dual theory of monotone, sublinear, constant additive functionals.

The condition of constant additivity in the definition of exactness can be
expressed in different equivalent forms.

Proposition 1.2.2 Let Γ : B(A) → R be a superlinear functional. Equiva-
lent are

(a) Γ is constant additive,

(b) Γ(c) = cΓ(1) for all constants c ∈ B(A),

(c) Γ(1) = −Γ(−1).

Proof. Suppose (a), i.e. Γ is constant additive. For non-negative c, (b) holds
by positive homogeneity of Γ. For c < 0 we have

0 = Γ(c− c) = Γ(c) + Γ(−c) = Γ(c) +−cΓ(1)

and therefore Γ(c) = cΓ(1) for all constants c ∈ B(A).
Now suppose (b). Then Γ(1) = −Γ(−1) follows directly by setting c := −1.
Finally, suppose (c). Superlinearity of Γ yields Γ(f +c) ≥ Γ(f)+|c|Γ(sign c)
and Γ(f) ≥ Γ(f + c) + |c|Γ(−sign c), hence equivalently

Γ(f)− |c|Γ(−sign c) ≥ Γ(f + c) ≥ Γ(f) + |c|Γ(sign c).

Thus equality, i.e. constant additivity, follows from Γ(1) = −Γ(−1). 2

It is easy to prove that monotone linear functionals as well as the infimum
inf on B(2Ω) are exact. Due to the one-to-one correspondence between sets
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and their indicator functions we identify set functions with functionals on
indicator functions. By this means, we will call a set function exact if the
corresponding functional on the set of indicator functions is exact.

We now define two norm-type functions (norms for short) closely related to
the class of exact functionals. The first one is a generalization of a norm
introduced for cooperative games by Schmeidler in (Schmeidler 1972 [35])
and will be proved in Theorem 1.2.6 to characterize the class of exactifiable
functionals. The second norm characterizes the class of exact functionals (cf.
Theorem 1.2.5). Actually, both “norms” are only Minkowski-functionals1

but since in cooperative game theory the corresponding Minkowski-func-
tionals are also called “norms” we follow the customary notation. For an
arbitrary real-valued functional Γ : M → R, we therefore define

|Γ| := sup

{
n∑

i=1

λiΓ(fi)

∣∣∣∣∣
n∑

i=1

λifi ≤ 1, n ∈ N, λi ≥ 0, fi ∈ M

}
(1.1)

‖Γ‖ := inf

{
c ∈ R+

∣∣∣∣∣ ∀ n ∈ N, λi ≥ 0, λ0 ∈ R, f, fi ∈ M :

f ≥
n∑

i=1

λifi + λ0 ⇒ Γ(f) ≥
n∑

i=1

λiΓ(fi) + λ0c

}
(1.2)

We now provide some rather elementary properties of the norms.

Proposition 1.2.3 Let Γ be a functional on a non-empty set M ⊂ B(2Ω).

(a) |Γ|, ‖Γ‖ ∈ [0,∞].

(b) |λΓ| = λ|Γ| and ‖λΓ‖ = λ‖Γ‖ for all λ ∈ R+.

(c) |Γ1 + Γ2| ≤ |Γ1|+ |Γ2| and ‖Γ1 + Γ2‖ ≤ ‖Γ1‖+ ‖Γ2‖.

(d) ‖Γ‖ = 0 ⇒ Γ = 0.

(e) | · | is monotone, i.e. Γ1 ≤ Γ2 implies |Γ1| ≤ |Γ2|.
1A functional p on a linear space is called Minowski-functional, if p(0) = 0, p(λx) =

λp(x) for all λ ≥ 0, and p(x + y) ≤ p(x) + p(y)
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(f) If ‖Γ‖ < ∞ then the infimum in Equation (1.2) is attained and

Γ(f) = sup

{
n∑

i=1

λiΓ(fi) + λ0‖Γ‖

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f,

n ∈ N, λ0 ∈ R, λi ≥ 0 and fi ∈ M

}
.(1.3)

(g) |Γ| ≤ ‖Γ‖.

(h) |Γ| ≤ |Γ′| and ‖Γ‖ ≤ ‖Γ′‖ if Γ′ is an extension of Γ.

Proof.

(a) – (e) These proofs consist of elementary calculations.

(f) Assume the infimum is not attained, i.e. there are n ∈ N, λi ≥ 0, λ0 ∈ R
and f, fi ∈ M with f ≥

∑n
i=1 λifi + λ0 and Γ(f) <

∑n
i=1 λiΓ(fi) +

λ0‖Γ‖. Then there exists a neighborhood U of ‖Γ‖ such that for all
c ∈ U , c is not in the set defined in (1.2). Therefore ‖Γ‖ cannot be the
infimum which proves our assumption to be wrong. Equation (1.3)
then follows directly from Equation (1.2) using the fact that the inf is
a min.

(g) For all n ∈ N, λi ≥ 0 and f, fi ∈ M with
∑n

i=1 λifi ≤ 1 we get

f ≥
n∑

i=1

λifi + f − 1,

Γ(f) ≥
n∑

i=1

λiΓ(fi) + Γ(f)− ‖Γ‖,

‖Γ‖ ≥
n∑

i=1

λiΓ(fi).

(h) The assertion follows directly from the definitions of the norms. 2

For an exact functional, both norms coincide with the operator norm if
1∈M . This condition holds in game theory (Ω is identified with its indicator
function) or if M = B(A).
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Proposition 1.2.4 For an exact functional Γ : M → R with 1 ∈ M , we
have

‖Γ‖ = |Γ| = Γ(1) = sup
f∈M

‖f‖∞6=0

|Γ(f)|
‖f‖∞

. (1.4)

Proof. By Proposition 1.2.3 (g) and the definition of the | · |-norm, ‖Γ‖ ≥
|Γ| ≥ Γ(1). Let Γ′ : B(2Ω) → R be an exact extension of Γ. Then for all
λi ≥ 0, λ0 ∈ R, f, fi ∈ M with f ≥

∑n
i=1 λifi + λ0

Γ(f) = Γ′(f) ≥ Γ′(
n∑

i=1

λifi + λ0) ≥
n∑

i=1

λiΓ(fi) + λ0Γ(1),

i.e. ‖Γ‖ ≤ Γ(1) < ∞, hence we obtain ‖Γ‖ = |Γ| = Γ(1). Obviously,
Γ(1) ≤ sup‖f‖∞ 6=0

|Γ(f)|
‖f‖∞ . For every f ∈ M with ‖f‖∞ 6= 0, by exactness of Γ

|Γ(f)|
‖f‖∞

=
∣∣∣∣Γ′( f

‖f‖∞

)∣∣∣∣ ≤ Γ(1).

This proves the last equation in (1.4). 2

The following two theorems characterize, by means of our two norms, the
class of exact, resp. exactifiable, functionals. Additionally, we obtain that
the characterization of exact functionals in Equation (1.3) can be used to
extend an exact functional in an analogous way as defining the inner set
function or the inner measure known in (non-additive) measure theory2.

Theorem 1.2.5 Let Γ be a real-valued functional on a non-empty set M .
Equivalent are

(a) Γ is exact.

(b) ‖Γ‖ < ∞.

2It should be stressed that for an exact set function µ neither the exact extension µ∗
defined in (1.5) nor the exact functional µ• defined in (1.8) (each restricted to 2Ω) coincides
with the inner set function known in non-additive measure theory or with the dual of the
outer measure (i.e. A 7→ µ(Ω) − µ∗ �/F55 8.9664 Tf 15.991h-385 0 Td[(A)]TJ/F31 5.9776 Tf16.5101-3.809 Td[c3
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(c) The functional Γ∗ : B(2Ω) → R defined by

Γ∗(f) := sup

{
n∑

i=1

λiΓ(fi) + λ0‖Γ‖

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f,

n ∈ N, λ0 ∈ R, λi ≥ 0 and fi ∈ M

}
(1.5)

is an exact extension of Γ with ‖Γ∗‖ = ‖Γ‖.

The equivalence relation (a) ⇔ (b) in Theorem 1.2.5 shows that the defi-
nition of exactness does not rely on structural assumptions on the domain
(which seems to be the case when defining exactness via functionals on a
linear space) but only on the relations between the values of the functional
(when calculating the ‖ · ‖-norm).

To simplify notations we omit some of the restrictions for the sup in the
sequel if they are the same as in Equation (1.5)).

Proof of Theorem 1.2.5. We prove (a) ⇒ (b) ⇒ (c) ⇒ (a). Suppose Γ
is exact. Then there exists an exact extension Γ′ : B(2Ω) → R of Γ and
by Proposition 1.2.3 (h) and Proposition 1.2.4, ‖Γ‖ ≤ ‖Γ′‖ = Γ′(1) < ∞.
Now suppose (b), i.e. ‖Γ‖ < ∞. Monotonicity and superlinearity of Γ∗ are
easily verified from elementary properties of sup. Γ∗ is real-valued because
Γ∗(f) ≥ ‖Γ‖ inf f > −∞ by definition of Γ∗ and, since 0 = Γ∗(f − f) ≥
Γ∗(f)+Γ∗(−f) by superlinearity of Γ∗, Γ∗(f) ≤ −Γ∗(−f) ≤ −‖Γ‖ inf −f <
∞ for all f ∈ B(2Ω). By setting f = 1, λ0 = 1 (resp. f = −1, λ0 = −1) and
the rest to zero in the definition of Γ∗, we have

Γ∗(1) ≥ ‖Γ‖, Γ∗(−1) ≥ −‖Γ‖, (1.6)

and therefore, using superlinearity of Γ∗,

0 = Γ∗(1− 1) ≥ Γ∗(1) + Γ∗(−1) ≥ ‖Γ‖ − ‖Γ‖ = 0, (1.7)

hence Γ∗(1) = −Γ∗(−1), i.e. Γ∗ is constant additive by Proposition 1.2.2.
Therefore Γ∗ is an exact functional with ‖Γ∗‖ = Γ∗(1) = ‖Γ‖ by Proposition
1.2.4 and Inequalities (1.6) and (1.7). By Proposition 1.2.3 (f), Γ∗ extends Γ.



8 CHAPTER 1. EXACT FUNCTIONALS AND THEIR CORE

Finally, suppose (c), i.e. Γ∗ is an exact extension of Γ. Then Γ is exact itself
by Definition 1.2.1. 2

The subsequent theorem characterizes exactifiable functionals in an analo-
gous way as exact functionals are characterized in Theorem 1.2.5.

Theorem 1.2.6 Let Γ be a real-valued functional on M . Equivalent are

(a) Γ is exactifiable.

(b) |Γ| < ∞.

(c) The functional Γ• : B(2Ω) → R defined by

Γ•(f) := sup

{
n∑

i=1

λiΓ(fi) + λ0|Γ|

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f

}
. (1.8)

is an exactification of Γ on M with |Γ•| = |Γ|.

Proof. We prove (a) ⇒ (b) ⇒ (c) ⇒ (a). Suppose Γ is exactifiable. Then
there exists an exact functional Γ′ : B(2Ω) → R with Γ′ ≥ Γ. By Proposi-
tions 1.2.3 (h) and 1.2.4, ∞ > Γ′(1) = |Γ′| and by monotonicity of | · | we
get |Γ′| ≥ |Γ|, thus |Γ| < ∞. Now suppose (b), i.e. |Γ| < ∞. The proof of Γ•
being exact and |Γ•| = |Γ| runs analogously to that of Theorem 1.2.5 only
replacing ‖ · ‖ by | · |. Additionally, Γ• dominates Γ by definition. Finally,
suppose (c), i.e. Γ• is an exact functional dominating Γ on M . Then Γ is
exactifiable by Definition 1.2.1. 2

We now show that ‖ · ‖ and exact functionals, resp. | · | and exactifiable
functionals, are closely related.

Proposition 1.2.7 Let Γ be a real-valued functional on M .

(a) If Γ is exact then

Γ∗ = inf
{
Γ′
∣∣ Γ′ is an exact extension of Γ with ‖Γ′‖ = ‖Γ‖

}
(1.9)

‖Γ‖ = inf
{
‖Γ′‖

∣∣ Γ′ is an exact extension of Γ
}
. (1.10)

(b) If Γ is exactifiable then

Γ• = inf
{
Γ′
∣∣ Γ′ is an exactification of Γ with |Γ′| = |Γ|

}
(1.11)

|Γ| = inf
{
|Γ′|

∣∣ Γ′ is an exactification of Γ
}
. (1.12)
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Proof.

(a) By Theorem 1.2.5, we have that Γ∗ is contained in the set of functionals
introduced in (1.9). Let Γ′ : B(2Ω) → R be an exact extension of Γ
with ‖Γ′‖ = ‖Γ‖. Then for every f ∈ B(2Ω) applying Proposition
1.2.3 (f)

Γ′(f) = sup

{
n∑

i=1

λiΓ′(fi) + λ0‖Γ′‖

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f, fi ∈ B(2Ω)

}

≥ sup

{
n∑

i=1

λiΓ(fi) + λ0‖Γ‖

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f, fi ∈ M

}
= Γ∗(f).

For every exact extension Γ′ : B(2Ω) → R of Γ, by Proposition 1.2.3
(h), ‖Γ‖ ≤ ‖Γ′‖. The infimum is attained since ‖Γ‖ = ‖Γ∗‖ by Theo-
rem 1.2.5.

(b) By Theorem 1.2.6, we have that Γ• is contained in the set of functionals
introduced in (1.11). Let Γ′ : B(2Ω) → R be an exact functional
dominating Γ on M with |Γ′| = |Γ|. Then analogously to (a), for
every f ∈ B(2Ω) additionally using ‖Γ′‖ = |Γ′| by Proposition 1.2.4,

Γ′(f) = sup

{
n∑

i=1

λiΓ′(fi) + λ0|Γ′|

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f, fi ∈ B(2Ω)

}

≥ sup

{
n∑

i=1

λiΓ(fi) + λ0|Γ|

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f, fi ∈ M

}
= Γ•(f).

By Proposition 1.2.3 (h), we have |Γ| ≤ |Γ′| for every exactification
Γ′ : B(2Ω) → R of Γ. The infimum is attained since |Γ| = |Γ•| by
Theorem 1.2.6. 2

The condition of admitting only functionals having the same norms in Equa-
tions (1.9) and (1.11) in Proposition 1.2.7 cannot be omitted because there
does not exist a minimal exact functional dominating a given functional Γ
in general. This is implied by the fact that the infimum of exact functionals
with different ‖·‖-norm is not constant additive as will be shown in the next
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example. Additionally, we show that Γ• and Γ∗ do not coincide in general
even for exact functionals3.

Example 1.2.8 Let M = {−1} and Γ : M → R be defined by Γ(−1) := −1.
Then Γ is exact since ‖Γ‖ = 1 and we have |Γ| = 0. Thus Γ• = 0 and
Γ∗ = inf. Suppose, there were a minimal exact functional Γ′ : B(2Ω) → R
dominating Γ on M . Then Γ′ ≤ Γ• and Γ′ ≤ Γ∗ which implies Γ′(−1) ≤ −1
and Γ′(1) ≤ 0. Hence, Γ′ would not be constant additive and therefore not
exact – a contradiction.

Since exact functionals having the same ‖ · ‖-norm will play an important
role for further examinations, we call these functionals equinormed .

The functionals Γ∗, resp. Γ•, are of great importance for the following anal-
ysis of a given exact, resp. exactifiable, functional Γ as they have a domain
with more structure than Γ. This allows us to demonstrate some properties
of Γ by investigating Γ∗, resp. Γ•, particularly using functional analytical
methods. Hence these functionals will be denoted as follows.

Definition 1.2.9 For an exact functional Γ : M → R, Γ∗ is called the nat-
ural extension of Γ.
For an exactifiable functional Γ : M → R, Γ• is called the natural exacti-
fication of Γ.

Next, we prove two inequalities for Γ in terms of ‖ · ‖ (cf. Walley 1991 [39,
2.6.1] and Delbaen 2002 [10, p. 4] for ‖Γ‖ = 1).

Proposition 1.2.10 Let Γ be an exact functional on M . Then for all
f, g ∈ M

(a) ‖Γ‖ inf f ≤ Γ(f) ≤ ‖Γ‖ sup f ,

(b) |Γ(f)− Γ(g)| ≤ ‖Γ‖ · ‖f − g‖∞. (Lipschitz-continuity)

3A sufficient condition for coincidence of Γ• and Γ∗ is that M contains a positive
constant function (cf. Proposition 1.2.4).
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Proof.

(a) From f ≥ inf f we get Γ(f) ≥ ‖Γ‖ inf f by definition of ‖·‖. Reversely,
we get Γ(f) ≤ ‖Γ‖ sup f from

−Γ(f) = −Γ∗(f) ≥ Γ∗(−f) ≥ ‖Γ∗‖ inf −f = −‖Γ‖ sup f.

(b) f = g+f−g ≤ g+‖f−g‖∞ implies Γ(f) = Γ∗(f) ≤ Γ∗(g+‖f−g‖∞′.9′9∞ T{ ∞6.9696 ′ Td(‖)]TJ/F33 7.97′∞ T{ 5.4546 -∞.63 T{ ∞5.∞6s9F∈9 ∞′.9′.e398 Td∪(w)∈8(e)-3F∞5 ∞′.9′9∞ T{ ∞∞.5∞5∞ ′ Td∪(−)]TJ/F33 7.97′∞ T{ 6.8∞8∈ -∞.6364 Td∪(∗)]TJ/F∞5 ∞′.9′9∞ T{ 4.73∈3 ∞.6364 Td∪(()]TJ/F∈9 ∞′.9′9∞ T{ 4.∈4∈4 ′ Td∪(})]TJ/F∞5 ∞′.9′9∞ T{ 6.8458 ′ Td∪(‖)]TJ/F33(=)-∈7∞76∈ ∞′.9′9∞ T{ 9.736∞ ′  Td57∈6]TJ/F∞5 ∞′.9′9∞ T{ 7.∈7∈7 ′ Td∪({)]TJ/F3∈F33 7.97′∞ T{ 6.8∞8∈ -∞.6364 Td∪(∗)]TJ/F3∈ ∞′.9′9∞ T{ 4.73∈3 ∞.6364 Td∪(‖)]TJ/F∞5 ∞7∞76∈‖
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function µ, let Iµf denote the Choquet integral∫
f dµ =

∫ 0

−∞
µ(f ≥ x)− µ(Ω) dx +

∫ ∞

0
µ(f ≥ x) dx (1.13)

w.r.t. µ for all f ∈ B(A).

Proposition 1.3.1 An exact functional Γ on B(A) is representable as a
Choquet integral if and only if it is comonotonic additive. A Choquet integral
w.r.t. a set function µ is exact if and only if µ is supermodular.

Proof. Comonotonic additivity is necessary for the representation as a Cho-
quet integral. Sufficiency is implied by the theorem from Schmeidler in
(Schmeidler 1986 [36]). The second equivalence is proved in Proposition 3
in the same paper. 2

An exact functional being not representable as a Choquet integral can be
constructed in the following way: Let ∅ 6= A $ B $ Ω and Γ : {1A, 1B, 1A +
1B} → R fulfill 2 ≥ Γ(1A+1B) > Γ(1A)+Γ(1B) ≥ 0 and 1 ≥ Γ(1B) ≥ Γ(1A).
Then Γ is exact but – like Γ∗ – not comonotonic additive. Hence, Γ is not
representable as a Choquet integral.

Supermodular set functions are a very remarkable class in the presented
theory because in Corollary 1.3.2 and Proposition 1.3.3 we will obtain that
not only they are exact itself but also the corresponding Choquet integral
coincides with their natural extension (cf. Krätschmer 2003 [24, Theorem
5.2]).

Corollary 1.3.2 Supermodular set functions µ : A → R+ are exact.

Proof. If µ is a supermodular set function then Iµ is an extension of µ which
is exact by Proposition 1.3.1. 2

Proposition 1.3.3 Let µ be an exact set function on an algebra A. Then

µ∗|B(A) ≥ Iµ (1.14)

and equality holds if and only if µ is supermodular.
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Proof. It is sufficient to prove the assertion for simple functions due to the
continuity properties of exact functionals (cf. Proposition 1.2.10 (b)) and
Choquet integrals. For any simple function f on B(A) in standard form, i.e.
f =

∑n
i=1 λi1Ai + λ0 with λ0 ∈ R, λi ≥ 0, Ai ∈ A, Ai ⊂ Aj , i ≤ j we have

Iµ(f) =
n∑

i=1

λiµ(Ai) + λ0µ(Ω)

≤ sup

{
n∑

i=1

λ′iµ(Bi) + λ′0‖µ‖

∣∣∣∣∣
n∑

i=1

λ′i1Bi + λ′0 ≤ f

}
= µ∗|B(A)(f).

For equality, it is necessary that Iµ is exact since µ∗|B(A) is exact. By
Proposition 1.3.1 this is equivalent to supermodularity of µ. Reversely, if µ
is supermodular we have µ(A) = µ∗|B(A)(1A) for all A ∈ A by Corollary
1.3.2 and µ(A) = Iµ(1A) for all A ∈ A. Additionally, by Proposition 1.2.4,
‖µ∗‖ = ‖µ‖ = ‖Iµ‖ and using Proposition 1.2.7 (a) yields µ∗|B(A) ≤ Iµ. 2

We now investigate the relation between exact, resp. exactifiable, function-
als and cooperative game theory. A cooperative game v is a bounded, non-
negative, real-valued set function on an algebra A over Ω, mapping the
empty set to 0. Two classes of cooperative games are of special interest
here, the balanced games and the exact games.

A cooperative game v is called balanced if for all n ∈ N, λi ≥ 0, Ai ∈ A
n∑

i=1

λi1Ai ≤ 1Ω =⇒
n∑

i=1

λiv(Ai) ≤ v(Ω). (1.15)

A cooperative game v is called exact if for all n ∈ N, λ0, λi ≥ 0, A, Ai ∈ A
n∑

i=1

λi1Ai − λ0 ≤ 1A =⇒
n∑

i=1

λiv(Ai)− λ0|v| ≤ v(A). (1.16)

Proposition 1.3.4 Let v be a non-negative set function on an algebra A.

(a) v is a balanced cooperative game if and only if v is exactifiable with
v(Ω) = |v|.

(b) v is an exact cooperative game if and only if v is exact.
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Proof.

(a) By definition of | · |, a game v is balanced if and only if v(Ω) = |v| (cf.
Schmeidler 1972 [35, Corollary 2.4]). The assertion then follows from
Theorem 1.2.6 since v(Ω) < ∞.

(b) Suppose v is an exact cooperative game. By setting λ0 = 0 and A = Ω
in (1.16) we obtain v(Ω) = |v| < ∞. Therefore, using the definition
of | · |, implication (1.16) remains true when admitting negative λ0,
thus |v| ≥ ‖v‖ by definition of ‖ · ‖. The reverse inequality holds by
Proposition 1.2.3 (g), hence ‖v‖ = |v| < ∞ and therefore v is exact by
Theorem 1.2.5.
Now suppose v is exact in the sense of Definition 1.2.1. Applying
Proposition 1.2.4, implication (1.16) holds by definition of ‖ · ‖, thus
v is an exact cooperative game. 2

To show that balanced cooperative games are a proper subclass of exactifi-
able set functions, let v be defined on 2{1,2} by v(A) = 1 ⇔ A 6= ∅. Then
|v| = 2, hence v is exactifiable by Theorem 1.2.6 but v({1, 2}) < |v|.

Proposition 1.3.4 shows that the definitions of balanced, resp. exact, coop-
erative games do not rely on structural assumptions on the domain, i.e. sup-
posing the domain being an algebra (cf. first paragraph following Theorem
1.2.5). These mathematically unnecessary, restrictive assumptions are pri-
marily motivated by applications and do not influence the results obtained.
But assuming a rich structure of the domain and using Proposition 1.2.4 the
definition of exactness can more easily be expressed using this structure as
it is done usually.

A well-known result in cooperative game theory is that balanced, resp. exact,
cooperative games can be characterized by properties of the set of additive
set functions dominating the game and having the same | · |-norm, i.e. the
core of the game. These relations remain true in our more general context
and will be analyzed in Section 5.

We now take a look at the relation of our classes of functionals to the theory
of imprecise previsions. Walley examined in (Walley 1991 [39]) mainly two
classes of functionals on an arbitrary non-empty subset of B(2Ω) to model
rational behaviour in decision situations. These are the lower previsions
avoiding sure loss and the coherent lower previsions.
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A real-valued functional Γ on a non-empty subset M of B(2Ω) is called a
lower prevision avoiding sure loss (cf. Walley 1991 [39, Definition 2.4.1 and
Lemma 2.4.4]) if for all n ∈ N, λi ≥ 0, fi ∈ M

sup
n∑

i=1

λifi ≥
n∑

i=1

λiΓ(fi). (1.17)

A real-valued functional Γ on a non-empty subset M of B(2Ω) is called a
coherent lower prevision (cf. Walley 1991 [39, Definition 2.5.1 and Lemma
2.5.4]) if for all n ∈ N, λ0, λi ≥ 0, f0, fi ∈ M

sup

(
n∑

i=1

λifi − λ0f0

)
≥

n∑
i=1

λiΓ(fi)− λ0Γ(f0). (1.18)

Proposition 1.3.5 Let Γ be a real-valued functional on a non-empty set
M ⊂ B(2Ω).

(a) Γ is a lower prevision avoiding sure loss if and only if it is exactifiable
and there exists an exactification Γ′ of Γ with ‖Γ′‖ = 1.

(b) Γ is a coherent lower prevision if and only if it is exact and there exists
an exact extension of Γ with ‖Γ′‖ = 1.

Proof.

(a) Walley has proved in (Walley 1991 [39]) that Γ is a prevision avoiding
sure loss if and only if

B(2Ω) → R, f 7→ sup

{
n∑

i=1

λiΓ(fi) + λ0

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f

}
(1.19)

is real-valued (cf. Walley 1991 [39, p. 123]). This is equivalent to this
functional being exact with | · |-norm 1 by Theorem 1.2.6, hence the
assertion holds.

(b) Γ is a coherent lower prevision if and only if the functional defined in
(1.19) extends Γ (cf. Walley 1991 [39, Proposition 3.1.2 and Lemma
3.1.3]). Analogously to part (a), the assertion holds using Theorem
1.2.5. 2
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Walley has also defined a “natural extension” for coherent lower previsions
(cf. Walley 1991 [39]). In contrast to the natural extension defined in this
chapter, Walley’s generally does not preserves the ‖ · ‖-norm of the coherent
lower prevision.
Propositions 1.3.4 (b) and 1.3.5 (b) imply that on the one hand the inter-
section of the classes of exact games and coherent lower previsions consists
of all exact games satisfying v(Ω) = 1 and on the other hand the class of
exact functionals is the smallest convex cone (cf. Proposition 1.2.3 (b), (c))
containing exact games and coherent lower previsions.

Finally, the relation of exact functionals to the theory of risk measures is
outlined. Artzner et al. and Delbaen examined in (Artzner et al. 1999 [2]),
resp. (Delbaen 2002 [10]) a class of risk measures which they call coherent
risk measures.

A real-valued functional Γ on a linear space B(A) is called a coherent risk
measure if (cf. Delbaen 2002 [10, Definition 2.1])

(a) Γ(f) ≤ 0 if f ≥ 0,

(b) Γ(f + g) ≤ Γ(f) + Γ(g),

(c) Γ(λf) = λΓ(f) for all λ ≥ 0,

(d) Γ(f + c) = Γ(f)− c for all c ∈ R.

These functionals are the negatives of normalized exact functionals, i.e. Γ :
B(A) → R is exact with ‖Γ‖ = 1 if and only if −Γ is a coherent risk measure
(cf. Maaß 2000 [28]). By Proposition 1.3.5 (b), the negatives of coherent risk
measures are also coherent lower previsions.

1.4 Exact operators

In some situations, it might be useful to perform transformations on the
domain of exact functionals. There are two natural ways of defining such
transforms. One is to introduce it via a function ϕ : Ω1 → Ω2 satisfying

f2 ◦ ϕ ∈ M1 for all f2 ∈ M2 (1.20)
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(cf. Maaß 2000 [28, p. 22]). If M1,M2 are σ-algebras then Condition (1.20) is
equivalent to measurability of ϕ and if M1,M2 are topologies then Condition
(1.20) is equivalent to continuity of ϕ. In the sequel, we will consider a
second way of defining a transform, i.e. operators directly mapping M1 to
M2. Therefore, we introduce exact operators in the following way.

Definition 1.4.1 An operator O : M1 → M2 is called exact if for each
exact functional Γ on M2 the functional Γ ◦O is exact.

Of course, we now have to characterize the exact operators in more concrete
terms. This characterization is almost the same as that of exact functionals
(cf. Theorem 1.2.5).

Proposition 1.4.2 An operator O : M1 → M2 is exact if and only if

O(f) = sup

{
n∑

i=1

λiO(fi) + λ0‖O‖

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f,

n ∈ N, λ0 ∈ R, λi ≥ 0 and fi ∈ M

}
(1.21)

with

‖O‖ := inf

{
c ∈ R+

∣∣∣∣∣ ∀ n ∈ N, λi ≥ 0, λ0 ∈ R, f, fi ∈ M :

f ≥
n∑

i=1

λifi + λ0 ⇒ O(f) ≥
n∑

i=1

λiO(fi) + λ0c

}
. (1.22)

Moreover, ‖Γ ◦O‖ = ‖Γ‖ · ‖O‖ holds.

Proof. If Equation (1.21) holds for O then, using Theorem 1.2.5, it is easy
to show that Γ ◦O is exact for every exact Γ and that ‖Γ ◦O‖ = ‖Γ‖ · ‖O‖
holds. Now suppose

O(f) 6≥
n∑

i=1

λiO(fi) + λ0‖O‖ (1.23)
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with
∑n

i=1 λifi + λ0 ≤ f for some n ∈ N, λ0 ∈ R, λi ≥ 0 and f, fi ∈ M .
Then, for some ω′2 ∈ Ω2 with O(f) <

∑n
i=1 λiO(fi) + λ0‖O‖ and for the

exact (linear) functional Γω′2
: M2 → R, Γω′2

(f) := f(ω′2) obviously

Γω′2
(O(f)) <

n∑
i=1

λiΓω′2
(O(fi)) + λ0‖O‖‖Γω′2

‖ (1.24)

holds, i.e. Γ ◦O is not exact. 2

The following application of Proposition 1.4.2 provides a powerful construc-
tion method for exact functionals. Several results concerning the set of exact
functionals can be obtained from this fairly general theorem. The main idea
is to set the range space M2 to a set of bounded functions on a set of exact
functionals.

Theorem 1.4.3 Let G be a non-empty set of exact functionals on M ⊂
B(2Ω) being uniformly bounded, i.e. supΓ′∈G ‖Γ′‖ < ∞, and for every f ∈ M

let f̃ ∈ B(2G) be defined by f̃(Γ′) := Γ′(f). Furthermore, let Γ : B(2G) → R
be an exact functional. If Γ is linear or if the elements in G are equinormed
then the functional

M → R, f 7→ Γ(f̃) (1.25)

is exact.

Proof. The operator

O : M → RG , O(f) := f̃

is well-defined because the function Γ′ 7→ Γ′(f) is bounded for every f ∈ M
since −∞ < ‖Γ‖ inf f ≤ Γ′(f) ≤ ‖Γ‖ sup f < ∞ for all Γ′ ∈ G. First, assume
that all Γ′ in G are equinormed. Then

n∑
i=1

λifi + λ0 ≤ f =⇒
n∑

i=1

λiΓ′(fi) + λ0‖Γ′‖ ≤ Γ′(f) ∀ Γ′ ∈ G

⇐⇒
n∑

i=1

λiO(fi) + λ0‖Γ′‖ ≤ O(f)

with n ∈ N, λ0 ∈ R, λi ≥ 0 and f, fi ∈ M . By Proposition 1.4.2, O is exact
with the same norm as all Γ′ ∈ G. Hence, the functional Γ ◦O as defined in
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Equation (1.25) is exact as a concatenation of an exact functional with the
exact operator O.
Now allow that the exact functionals in G are not equinormed. Then O is
not exact in general. Since the mapping

G → {Γ′∗ | Γ′ ∈ G}, Γ′ 7→ Γ′∗

is bijective, we can assume w.l.o.g. M = B(2Ω), especially ‖Γ′‖ = Γ′(1) (cf.
Proposition 1.2.4). Then, by exactness of each Γ′ ∈ G,

O(f)(Γ′) = Γ′(f)

≥
n∑

i=1

λiΓ′(fi) + λ0Γ′(1)

=
n∑

i=1

λiO(fi)(Γ′) + λ0O(1)(Γ′)

if f ≥
∑n

i=1 λifi + λ0 with n ∈ N, λ0 ∈ R, λi ≥ 0 and f, fi ∈ M . For a
linear exact functional Γ : B(2G) → R we then obtain

Γ(O(f)) ≥
n∑

i=1

λiΓ(O(fi)) + λ0Γ(O(1)),

i.e. ‖Γ ◦ O‖ ≤ Γ(O(1)) < ∞ (cf. Equation (1.2)). Thus Γ ◦ O is exact by
Theorem 1.2.5. Since restrictions of exact functionals are again exact, this
result also holds if M 6= B(2Ω). 2

We now state some implications of Theorem 1.4.3 which are well-known,
e.g. in the theory of imprecise previsions (cf. Walley 1991 [39, 2.6.3 - 2.6.7]),
but their mathematical relations in the sense of being special cases of a very
general construction method have not been mentioned yet.

Corollary 1.4.4 Let {Γi}i∈I be a non-empty indexed set of equinormed ex-
act functionals on M ⊂ B(2Ω).

(a) The lower envelope infi∈I Γi of the Γi is exact.

(b) Finite positive linear combinations in {Γi}i∈I are exact.
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If, especially, I = N then

(c) The limit inferior lim infi→∞ Γi of the Γi is exact.

(d) If Γi is a pointwise convergent sequence then the limit limi→∞ Γi is
exact.

(e) If Γi is an increasing sequence then the limit supi→∞ Γi is exact.

Proof. The infimum, positive linear combinations, the limit inferior as well
as the limit are exact functionals on {Γi}i∈I . The assertions (a) – (d) then
follow direct from Theorem 1.4.3. For (e) we additionally have to use that
the limit exists since all Γi(f) are bounded by ‖Γi‖ sup f for all f ∈ M . 2

We conclude this section with a sketch of a possible application of Theorem
1.4.3. Suppose there are n experts assigning values “in a normalized exact
way” to all gambles f ∈ M , i.e. G := {Γi}i=1,...,n is a non-empty set of
normalized exact functionals. Furthermore, suppose we also want to assign
values in an exact way to all f ∈ M just by incorporating the Γi. By
Corollary 1.4.4 (a), we could take the lower envelope of all Γi, infi=1,...,n Γi,
as our exact functional if we were very cautious. If we had certain opinions
on the exact functionals of all experts we also could assign weights λi ≥ 0
to every Γi and take

∑n
i=1 λiΓi as our exact functional (cf. Corollary 1.4.4

(b)). But using Theorem 1.4.3, we can go even further. For example, we
can assign weights µ(A) to “coalitions” A ⊂ {1, . . . , n} of experts in order
to express that the unanimity of certain experts on the evaluation of some
gamble f should count more than the unanimity of some other coalitions. If
this set function µ is supermodular then the Choquet integral

∫
· dµ is exact

and, by Theorem 1.4.3, so is the lower prevision f 7→
∫
(i 7→ Γi(f)) dµ.

1.5 The core of functionals

In this section, we adopt the core concept from cooperative game theory to
our theory of functionals on arbitrary subsets of B(2Ω). Similar concepts
are known in all theories mentioned in the introduction. The core allows us
to analyze exact and exactifiable functionals with methods from functional
analysis as well as measure and integration theory.
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Throughout the remaining part of this chapter we identify the dual space
B∗(A) of B(A) with the space of bounded additive set functions on A,
ba(A), due to the existence of a natural isometric isomorphism between
these spaces (cf. Dunford and Schwartz 1958 [14, Theorem IV.5.1]), i.e.
linear functionals are sometimes interpreted as additive set functions and
vice versa. An important subspace of ba(A) used in this section is the space
of bounded countably additive set functions on A, ca(A).

Definition 1.5.1 Let Γ : M → R be a functional and A an algebra satisfy-
ing M ⊂ B(A). Then A-core of Γ

CA(Γ) :=
{
Λ ∈ B∗(A) | Λ|M ≥ Γ,Λ monotone, |Λ| = |Γ|

}
(1.26)

is called the A-core of Γ. If no confusion about the algebra used is possible
or a result concerning the A-core does not depend on the algebra we call the
A-core just core and denote it by C(Γ).

As noted in Section 1, the elements of the core are exact because they are
monotone, linear and real-valued. We first state a simple result on the core.

Proposition 1.5.2 Let Γ : M → R be a functional and A an algebra satis-
fying M ⊂ B(A). Then Γ is exactifiable if CA(Γ) 6= ∅ .

Proof. If Λ ∈ C(Γ) then |Λ| < ∞ by Proposition 1.2.4, such that exactifia-
bility of Γ is necessary for any Λ ∈ B∗(A) satisfying the condition |Λ| = |Γ|
in Definition 1.5.1 and therefore the core being non-empty. 2

The restriction to equinormed linear functionals in the definition of the core
is necessary to apply Theorem 1.4.3, resp. Corollary 1.4.4, to the core for
proving the main theorem in this section. It will turn out in Corollary 1.5.9
that this restriction does not influence the question under what conditions
the core is non-empty.

Due to our identification of B∗(A) with ba(A) we have

CA(Γ) =
{
λ ∈ ba(A) | Iλ|M ≥ Γ, λ ≥ 0, λ(Ω) = |Γ|

}
(1.27)

since λ(Ω) = |λ| and |Iλ| = |λ| by exactness of λ, by Proposition 1.2.4 and
Proposition 1.3.3.
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For a cooperative game v on an algebra A, the definition of the core given
here corresponds to the one in cooperative game theory. The core of a
cooperative game v : A → R+ is defined by

core(v) :=
{
λ : A → R additive | λ ≥ v, λ(Ω) = v(Ω)

}
. (1.28)

The definitions (1.27) and (1.28) of the core coincide if v(Ω) = |v|, i.e. if
v is balanced. If v is not balanced then λ(Ω) = |λ| ≥ |v| > v(Ω) for all
monotone, additive λ dominating v, i.e. core(v) = ∅. Hence core(v) ⊂ CA(v)
and, analogously to Proposition 1.5.2, core(v) 6= ∅ implies v being balanced.

The following two propositions show the connection between set functions,
their Choquet integrals and the corresponding cores. In Proposition 1.5.3,
the cores of a set function and its Choquet integral are compared whereas in
Proposition 1.5.4 (cf. Denneberg 1994 [11, Proposition 10.3]) we investigate
the relation of the set function and the functional defined as the infimum of
a non-empty equinormed subset of B∗(A).

Proposition 1.5.3 Let µ be a finite monotone set function on an algebra
A. Then

C(µ) = C(Iµ). (1.29)

Proof. For every λ ∈ C(µ), we have Iλ ∈ C(Iµ) because the definition of the
Choquet integral implies λ ≥ µ ⇒ Iλ ≥ Iµ. Reversely, Λ ∈ C(Iµ) implies
Λ|A ∈ C(µ) trivially. 2

Proposition 1.5.4 Let C be a non-empty subset of B∗(A) consisting of
equinormed monotone functionals and let µ : A → R+ be defined by µ(A) :=
infΛ∈C Λ(1A). Then for all f ∈ B(A)

inf
Λ∈C

Λ(f) ≥ Iµ(f) (1.30)

and equality holds if and only if µ is supermodular.

Proof. By using the isometric isomorphy of B∗(A) and ba(A), we obtain
infΛ∈C Λ = infλ∈C Iλ ≥ Iµ. By Proposition 1.3.1, equality holds if and only
if µ is supermodular. 2

We now show that on the one hand the core of a functional and its exactifica-
tion and on the other hand the different cores of a functional are essentially
identical.
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Proposition 1.5.5 Let Γ be a real-valued functional on M and A1,A2 two
algebras satisfying M ⊂ B(A1) ⊂ B(A2). Then

(a) CA1(Γ) =
{
Λ|B(A1) | Λ ∈ C2Ω(Γ•)

}
,

(b) CA1(Γ) =
{
Λ|B(A1) | Λ ∈ CA2(Γ)

}
.

Proof.

(a) Let Λ ∈ CA1(Γ) and f ∈ B(A1). Then using exactness of Λ and
|Λ| = Λ(1), by Proposition 1.2.4,

Γ•(f) = sup

{
n∑

i=1

λiΓ(fi) + λ0|Γ|

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f

}

≤ sup

{
n∑

i=1

λiΛ(fi) + λ0|Λ|

∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f

}

= sup

{
Λ

(
n∑

i=1

λifi + λ0

) ∣∣∣∣∣
n∑

i=1

λifi + λ0 ≤ f

}
= Λ(f),

thus Λ dominates the superlinear functional Γ•|B(A1). By the Hahn-
Banach Theorem, Λ can be extended to a linear functional Λ′ on
B(2Ω) such that |Λ′| = |Λ| and Λ′ ≥ Γ•. Λ′ is monotone since
f ≥ 0 implies Λ′(f) ≥ Γ•(f) ≥ 0, i.e. Λ′ ∈ C2Ω(Γ•). Thus we have
CA1(Γ) ⊂ {Λ|B(A1) | Λ ∈ C2Ω(Γ•)}. The reverse inclusion is trivial.

(b) The assertion follows from (a) by replacing CA2 in (b) by {Λ|B(A2) |
Λ ∈ C2Ω(Γ•)}. 2

Proposition 1.5.5 (a) allows us to investigate the core of an exactifiable func-
tional by investigating its natural exactification. Therefore we can restrict
our examinations to the relations between exact functionals on B(2Ω) and
their core and obtain afterwards the general results just by applying Propo-
sition 1.5.5 (a). These examinations start with one further representation
of the core of an exact functional Γ : B(2Ω) → R taking advantage of the
structure of the domain of Γ. We will make use of the natural embedding
B(2Ω) → B∗∗(2Ω), f 7→ f̂ defined by f̂(Λ) := Λ(f).
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Lemma 1.5.6 Let Γ be an exact functional on B(2Ω). Then

C(Γ) =
{
Λ ∈ B∗(2Ω) | Γ ≤ Λ ≤ Γ

}
(1.31)

=
⋂

f∈B(2Ω)

f̂−1
(
[Γ(f),Γ(f)]

)
. (1.32)

Proof. Suppose Λ ∈ C(Γ). Then Λ(f) = −Λ(−f) ≤ −Γ(−f) = Γ(f), hence
Λ ∈ {Λ′ ∈ B∗(2Ω) | Γ ≤ Λ′ ≤ Γ}.
Now let Λ : B(2Ω) → R satisfy Γ ≤ Λ ≤ Γ. Then Λ is monotone since
f ≥ 0 implies Λ(f) ≥ Γ(f) ≥ 0. By Proposition 1.2.2, Γ(1) = Γ(1), hence
Λ(1) = Γ(1) and using Proposition 1.2.4

|Λ| = Λ(1) = Γ(1) = |Γ|.

Equation (1.32) holds by the definition of the natural embedding. 2

The subsequent theorem is essential to adopt results from (σ-)additive mea-
sure and integration theory to the theory of exact functionals like for example
convergence theorems (cf. Theorem 1.5.11). It has been proved for super-
linear functionals by Bonsall (Bonsall 1954 [5, Lemma 6 and Theorem 11])
and later independently in different contexts, e.g. by Huber (Huber 1981
[23, Proposition 10.2.1]. The main part of our proof is a simple application
of the Hahn-Banach Theorem.

Theorem 1.5.7 There is a one-to-one correspondence between exact func-
tionals on B(2Ω) and non-empty, convex, weak∗-compact sets C ⊂ B∗(2Ω)
of equinormed functionals, determined by the identities

Γ(f) = min
Λ∈C

Λ(f) resp. C = C(Γ). (1.33)

Proof. First, we prove that minΛ∈C Λ is exact. For every f ∈ B(2Ω), the nat-
ural embedding f̂ attains its infimum on C because of the weak∗-compactness
of C. Exactness of minΛ∈C Λ then follows from Corollary 1.4.4.
Next, C1 6= C2 implies minΛ∈C1 Λ 6= minΛ∈C2 Λ. Let w.l.o.g. Λ′ ∈ C1 \ C2.
Then by a separation theorem (Dunford and Schwartz 1958 [14, Theo-
rem V.2.10]) there exists a f ∈ B(2Ω) with Λ′(f) < minΛ∈C2 Λ(f), thus
minΛ∈C1 Λ 6= minΛ∈C2 Λ.
Now we prove that C(Γ) is non-empty, convex and weak∗-compact and
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Γ = minΛ∈C(Γ) Λ. Convexity of C(Γ) follows directly from Definition 1.5.1.
Equation (1.32) in Lemma 1.5.6 implies weak∗-closeness of C(Γ). If |Γ| = 0
then C(Γ) = {0}, i.e. the core is weak∗-compact. If |Γ| > 0 then the core is
weak∗-compact as a subset of a positive multiple of the weak∗-closed unit
ball in B∗(2Ω), which is weak∗-compact by the Banach-Alaoglu Theorem
(cf. Dunford and Schwartz 1958 [14, Theorem V.4.2]).
To prove non-emptiness of the core and Γ = minΛ∈C(Γ) Λ we show that for
every f0 ∈ B(2Ω) there exists a Λ ∈ B∗(2Ω) with Λ(1) = Γ(1), Λ(f0) = Γ(f0)
and Λ(f) ≥ Γ(f) for all f ∈ B(2Ω). Let f0 ∈ B(2Ω) be arbitrary and the
linear functional Λ′ on the linear space spanned by the functions 1 and
f0, span(1, f0), be defined by Λ′(1) := Γ(1) and Λ′(f0) := Γ(f0). Then
Λ′ ≥ Γ|span(1, f0) because of Λ′(−f0) = −Λ′(f0) = −Γ(f0) ≥ Γ(−f0). Us-
ing the Hahn-Banach Theorem we can extend Λ′ to B(2Ω) such that this
extension is contained in C(Γ).
Finally, Γ1 6= Γ2 implies C(Γ1) 6= C(Γ2). If Γ1 6= Γ2 there is w.l.o.g. a
f ∈ B(2Ω) with Γ1(f) < Γ2(f). Then by the preceding part of the proof
there exists a Λ ∈ C(Γ1) with Λ(f) = Γ(f). Therefore C(Γ1) 6= C(Γ2) be-
cause of Λ /∈ C(Γ2). 2

The next corollary characterizes the natural extension, resp. the natural
exactification, by means of the core in an analogous way as in Proposition
1.2.7. Corollary 1.5.8 (a) is well-known in game theory in a slightly different
form (cf. Schmeidler 1972 [35, Corollary 2.6]).

Corollary 1.5.8 Let Γ : M → R be a functional.

(a) If Γ is exact then for all f ∈ B(2Ω)

Γ∗ = min
{
Λ | Λ ∈ B∗(2Ω),Λ|M ≥ Γ,Λ monotone, ‖Λ‖ = ‖Γ‖

}
.

(1.34)

(b) If Γ is exactifiable then for all f ∈ B(2Ω)

Γ• = min
{
Λ | Λ ∈ C2Ω(Γ)

}
. (1.35)

Proof.

(a) Using ‖Γ‖ = ‖Γ∗‖ by Theorem 1.2.5 and |Λ| = ‖Λ‖ by Proposition
1.2.4, we obtain from Theorem 1.5.7

C2Ω(Γ∗) =
{
Λ ∈ B∗(2Ω) | Λ ≥ Γ∗,Λ monotone, ‖Λ‖ = ‖Γ‖

}
.
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Let Λ ∈
{
Λ′ ∈ B∗(2Ω) | Λ′|M ≥ Γ,Λ′ monotone, ‖Λ′‖
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Definition 1.5.10 Let Γ : M → R be a functional, AM the σ-algebra gen-
erated by the upper level sets of all f ∈ M , i.e. AM := A({f ≥ α}, f ∈
M,α ∈ R). Then

Cσ(Γ) := {λ ∈ ca(AM ) | Iλ|M ≥ Γ, λ ≥ 0, λ(Ω) = |Γ|} (1.36)

is called the σ-core of Γ.

Comparing the definitions of the core and the σ-core, a unique “small” σ-
algebra AM is used in the latter. This is done due to the fact that in
contrast to the elements of the core those of the σ-core cannot be extended
to σ-additive measures on greater domains in general, i.e. Proposition 1.5.5
does not hold for the σ-core (cf. Parker 1991 [33, Example 1]).

Due to the close connection between exact functionals and their core the
continuity properties of exact functionals correspond directly to those of
the elements of the AM -core like in game theory (cf. Schmeidler 1972 [35,
Theorem 3.2 and Proposition 3.15]). The proof of the subsequent theorem
is a simple generalization of that given by Parker for exact games in (Parker
1991 [33]).

Theorem 1.5.11 (Monotone Convergence Theorem)
Let Γ : M → R be an exact functional satisfying C(Γ) = Cσ(Γ) and (fn)n∈N
a monotone sequence in M such that fn converges pointwise to a function
f ∈ M . Then

lim
n→∞

Γ(fn) = Γ(f). (1.37)

Proof. Suppose (fn)n∈N is a decreasing sequence in M such that limn→∞ fn

= f ∈ M . Since Γ is exact, there exists an element Λ in the core C(Γ) by
Proposition 1.5.7 such that Λ(f) = Γ(f) and since C(Γ) = Cσ(Γ),

Γ(f) ≤ inf
n∈N

Γ(fn) ≤ inf
n∈N

Λ(fn) = Λ(f) = Γ(f).

Now suppose (fn)n∈N is an increasing sequence in M such that limn→∞ fn

= f ∈ M . Then f̂n : CAM
(Γ) → R is an increasing sequence of weak∗-

continuous functions on CAM
(Γ) with pointwise limit f̂ because C(Γ) =

Cσ(Γ). By Dini’s Theorem (cf. Dudley 1989 [13, Theorem 2.4.10]) the con-
vergence is uniform,

Γ(f) = min
Λ∈C(Γ)

Λ(f) = min
Λ∈C(Γ)

sup
n∈N

Λ(fn) = sup
n∈N

min
Λ∈C(Γ)

Λ(fn) = sup
n∈N

Γ(fn).
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The reverse implication of the Monotone Convergence Theorem, i.e. the de-
duction of C(Γ) = Cσ(Γ) from the continuity property (1.37) is not valid in
general. This is based on the fact that the domain of Γ can have not enough
structure to relate the equivalence of the cores to the continuity property of
Γ.

Fatou’s Lemma and Lebesgue’s Dominated Convergence Theorem can be de-
duced from the Monotone Convergence Theorem analogously to integration
theory.



Chapter 2

Linear Representation of Linear

Inequality Preserving Functionals

2.1 Introduction

In different fields of mathematical economics, e.g. game theory or decision
theory, one naturally arrives at non-additive set functions and non-linear
functionals. For these classes of functions, there is not such an elaborated
mathematical theory like for measures or linear functionals and the existing
results have not become very popular among most mathematicians. Since
in most cases in mathematical economics one starts with a linear space of
non-additive set functions or non-linear functionals and singles out a special
subclass within this space it would be favorable to have a transform at our
disposal mapping each element of the linear space to a signed measure or
linear functional and characterize the elements of the special subclass by
monotonicity of the transformed function.

For totally monotone set functions, such a result is already known as
Dempster-Shafer-Shapley Representation Theorem in the discrete case or
as Möbius transform in the general case. The results in this chapter mainly
base on articles from Glenn Shafer (cf. Shafer 1979 [38]), Massimo Marinacci
(cf. Marinacci [32]), and Dieter Denneberg (cf. Denneberg 1997 [12]). We
pick up an idea first stated by Shafer in 1979 using Choquet’s Theorem for
introducing the transform. This method allows us not to presuppose special
properties of the domain of the considered set functions, resp. functionals.
We provide a Möbius type transform for several classes of non-additive set

29
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functions, resp. non-linear functionals, principally using one property shared
by all of them – preserving certain linear inequalities.

This chapter is organized as follows. In Section 2, we state the Bishop-de
Leeuw Theorem which, like Choquet’s Theorem, belongs to a group of re-
sults generalizing the famous Krein-Milman Theorem and we provide some
topological foundations necessary for its application. The notion of linear in-
equality preserving functionals is introduced in Section 3. We point out the
generality of this notion by giving several examples and we state some ele-
mentary topological results. In Section 4, we present the announced isomor-
phism between the linear space spanned by the linear inequality preserving
functionals and a linear space of restricted integrals and characterize the lin-
ear inequality preserving functionals by monotonicity of their transformed.

2.2 Preliminaries

Like in the previous chapter, let Ω be a non-empty set, B(2Ω) the linear
space of bounded (w.r.t. the supremum norm) real-valued functions on Ω
and M ⊂ B(2Ω) be non-empty. To avoid laborious considerations of special
cases, we will assume the constant function 1 to be contained in M . If M
consists of all indicator functions of the elements of an algebra then a func-
tional Γ on M can be interpreted as a set function. In this case, 1 ∈ M
is trivially fulfilled since every algebra contains the whole set Ω. Denote
by B(M) the linear space of all real-valued functionals Γ on M which are
bounded, i.e. the operator norm ‖ ·‖op : M → R, ‖Γ‖op := supf∈M,f 6=0

|Γ(f)|
‖f‖∞

is finite.

The linear space B(M) will additionally be considered as a topological space
endowed with the topology T having as subbase the sets B(Γ, f, ε) := {Γ′ ∈
B(M) | |Γ′(f) − Γ(f)| < ε}, with Γ ∈ B(M), f ∈ M , and ε > 0. The
definition of T is similar to that of the weak∗ topology and it is the smallest
making all functions

f̃ : B(M) → R, f̃(Γ) := Γ(f) (2.1)

continuous for all f ∈ M . The set of all such f̃ will be denoted by M̃ , the
linear space spanned by M̃ will be denoted by span(M̃). The topology T
is also known as the topology of pointwise convergence and, by definition of
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the product topology, T is identical with the relative topology of B(M) as
a subset of the product space Πf∈MRf , Rf := R for all f ∈ M .

We start with some topological results that will serve as technical basis for
the following analysis.

Proposition 2.2.1 Under the topology T the linear space B(M) is a locally
convex and Hausdorff topological linear space.

Proof. We have to show that T possesses a base consisting of convex sets.
Since convexity is preserved under forming intersections it suffices to show
that the given subbase of T consists of convex sets. Therefore, suppose
Γ1,Γ2 ∈ B(Γ, f, ε) with Γ ∈ B(M), f ∈ M and ε > 0 and let λ ∈ [0, 1].
Then

|λΓ1(f)+(1−λ)Γ2(f)−Γ(f)| ≤ λ|Γ1(f)−Γ(f)|+(1−λ)|Γ2(f)−Γ(f)| < ε,

i.e. B(Γ, f, ε) is convex since Γ1,Γ2 and λ were chosen arbitrarily. There-
fore, all elements of the subbase are convex because Γ, f and ε were chosen
arbitrarily. 2

The subsequent proposition is a variant of the Banach-Alaoglu Theorem
which states that the closed unit ball is weak∗-compact (cf. Dunford and
Schwartz 1958 [14, Theorem V.4.2]) .

Proposition 2.2.2 The unit ball B1 = {Γ ∈ B(M) | ‖Γ‖op ≤ 1} in (B(M),
‖ · ‖op) is T -compact.

Proof. Let I := Πf∈M [−1, 1]. By Tychonoff’s Theorem, I is compact w.r.t.
the product topology. Let τ : B1 → I be the injective mapping τ(Γ) :=
Πf∈M

Γ(f)
‖f‖∞ . Since the sets B(Γ, f, ε) := {Γ′ ∈ B1 | |Γ′(f)− Γ(f)| < ε} with

Γ ∈ B1, f ∈ M , ε > 0 form a subbase for the relative topology TB of B1

generated by T and since {Πf∈MUf | ∃f ′ ∈ M,x ∈ R, ε > 0 : Uf = R ∀f ∈
M \ {f ′}, Uf ′ =]x − ε, x + ε[} is a subbase of the product topology in RM ,
the images of the subbase elements of TB1 form a subbase of the relative
product topology in τ(B1). Thus τ is a homeomorphism between B1 en-
dowed with the relative T -topology, and τ(B1) endowed with the relative
product topology. Therefore, to prove that B1 is T -compact, it suffices to
show that B1 is T -closed. This is easily done since for any Γ ∈ B(M) with
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‖Γ‖op > 1 there exist an f ∈ M and an ε > 0 with |Γ(f)| > ‖f‖∞ + ε
such that B(Γ, f, ε) is an open neighborhood of Γ disjoint from B1, i.e. B1 is
T -closed. 2

The main result of this chapter will heavily base on the Bishop-de Leeuw
Theorem (cf. Alfsen 1971 [1, Theorem I.4.14]). We recall that the Baire
σ-algebra of a topological space is the smallest σ-algebra for which all con-
tinuous real-valued functions are measurable, with, as usual, the Borel σ-
algebra on the range space R. Furthermore, denote by ex(X) the set of
extreme points of X.

Theorem 2.2.3 (Bishop-de Leeuw) Suppose E is a locally convex Haus-
dorff linear space over R and X a non-empty compact convex subset of
E. Denote by A(X) the linear space of continuous real-valued functions
a : X → R which are affine, i.e. a(λx + (1− λ)y) = λa(x) + (1− λ)a(y) for
x, y ∈ X, 0 ≤ λ ≤ 1 and by B0 the Baire σ-algebra on X. Then for every
x ∈ X there exists a probability measure µx on the σ-algebra ex(X) ∩ B0,
such that

a(x) =
∫

a dµx for all a ∈ A(X). (2.2)

Generally, it is not possible to replace the Baire σ-algebra by the greater
Borel σ-algebra (cf. Alfsen 1971 [1, p. 39 f.]).

2.3 Linear inequality preserving functionals

Throughout this chapter, denote by S system of finite sets in R×M satisfying

{(xi, fi) | i = 1, . . . , n} =: (xi, fi)i=1,...,n ∈ S =⇒
n∑

i=1

xifi ≥ 0. (2.3)

Furthermore, let C(S) denote the class of linear inequality preserving func-
tionals Γ ∈ B(M) (w.r.t. S) determined by

Γ ∈ C(S) :⇐⇒
n∑

i=1

xiΓ(fi) ≥ 0 ∀ (xi, fi)i=1,...,n ∈ S. (2.4)

Subsequently, we provide some examples of linear inequality preserving func-
tionals. In fact, most classes of non-additive set functions and non-linear
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functionals occurring in mathematical economics are linear inequality pre-
serving functionals.

Example 2.3.1

(a) C(∅) = B(M). Moreover, C(S) = B(M) if (xi, fi)i=1,...,n ∈ S implies
xi = 0 for all i = 1, . . . , n.

(b) Linear functionals are the linear inequality preserving functionals w.r.t.

Slin :=
{

(xi, fi)i=1,...,n

∣∣∣ n ∈ N,

n∑
i=1

xifi = 0
}

. (2.5)

Linearity of all Γ ∈ C(Slin) follows from the fact that (xi, fi)i=1,...,n∈
Slin implies (−xi, fi)i=1,...,n ∈ Slin.

(c) Monotone functionals are the linear inequality preserving functionals
w.r.t.

Smon :=
{
{(1, f), (−1, g)}

∣∣∣ f ≥ g
}

. (2.6)

(d) Positive linear functionals are the linear inequality preserving func-
tionals w.r.t.

Slin ∪ Smon. (2.7)

(e) For a natural number k ≥ 2, a cooperative game v on an algebra
M = A is called k-monotone if for any A1, . . . , Ak ∈ A

v
( k⋃

i=1

Ai

)
+

∑
I⊂{1,...,k},I 6=∅

(−1)|I| v
(⋂

i∈I

Ai

)
≥ 0. (2.8)

Hence k-monotone games are the linear inequality preserving set func-
tions w.r.t.

Sk−mon :=
{(

(−1)|I|,
⋂
i∈I

Ai

)
I⊂{1,...,k}

∣∣∣ A1, . . . , An ∈ A
}

(2.9)

understanding that
⋂

i∈∅ Ai =
⋃k

i=1 Ai. The elements of Sk−mon fulfill
Condition (2.3) even with equality by the principle of inclusion exclu-
sion.
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(f) A cooperative game is called totally monotone if it is monotone and k-
monotone, for all k ≥ 2. Thus, totally monotone games are the linear
inequality preserving functionals w.r.t.

Stot−mon = Smon ∪
⋃
k∈N

Sk−mon. (2.10)

(g) Exact functionals (recall that we presuppose 1 ∈ M) are the linear
inequality preserving functionals w.r.t.

Sexact :=
{

(xi, fi)i=1,...,n+2 | x1, . . . , xn < 0, xn+1 ∈ R,

xn+2 = 1, fn+1 = 1,

n+2∑
i=1

xifi ≥ 0
}

. (2.11)

This can be rewritten to the usual definition of exact functionals,

fn+2 ≥
n∑

i=1

xifi +xn+1 =⇒ Γ(fn+2) ≥
n∑

i=1

xiΓ(fi)+xn+1Γ(1) (2.12)

for all n ∈ N, x1, . . . , xn > 0, xn+1 ∈ R.

Now we state some basic properties of linear inequality preserving function-
als.

Proposition 2.3.2 C(S) is a T -closed convex cone.

Proof. It follows directly from the definition that C(S) is a convex cone.
To prove that C(S) is T -closed suppose Γ /∈ C(S). Then there exists a
finite sequence (xi, fi)i=1,...,n in S with

∑n
i=1 xiΓ(fi) < 0. Setting εi :=

ε/(2
∑n

k=1 xk), the set
⋂n

i=1 B(Γ, fi, εi) is an open neighborhood of Γ which
is disjoint from C(S). Hence C(S) is T -closed. 2

The subsequent proposition follows directly from Proposition 2.2.2 and
Proposition 2.3.2.

Proposition 2.3.3 The set C(S) ∩B1 is T -compact in B(M).
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Note, that C(Stot−mon)∩B1 consists of all belief functions and that C(Sexact)
∩ B1 consists of all coherent lower previsions (cf. Proposition 1.3.5 and
Proposition 1.2.4).

We now show that C(S) is not only closed under (finite) convex combina-
tions but also under “infinite convex combinations” (expected values). The
subsequent proposition is very similar to Theorem 1.4.3.

Proposition 2.3.4 Let X ⊂ C(S) and Λ : {f̃ |X | f ∈ M} → R be a mono-
tone linear functional. Then the functional Γ : M → R, defined by

Γ(f) := Λ(f̃) (2.13)

is contained in C(S). If especially A is an arbitrary σ-algebra over X making
all f̃ |X measurable, f ∈ M , and µ is a probability measure on A then the
functional Γ : M → R, defined by

Γ(f) :=
∫

f̃ dµ (2.14)

is contained in C(S).

Proof. Let (xi, fi)i=1,...,n be in S. From
∑n

i=1 xiΓ′(fi) ≥ 0 for every Γ′ ∈ X
follows

∑n
i=1 xif̃i ≥ 0. Thus

n∑
i=1

xiΓ(fi) =
n∑

i=1

xiΛ(f̃i) = Λ
( n∑

i=1

xif̃i

)
≥ 0. 2

2.4 Main results

In this section, we present the announced isomorphism between the linear
space spanned by a convex cone of linear inequality preserving functionals
C(S) and a linear space of restricted integrals and characterize the elements
of C(S) by monotonicity of their transform. As a preparation, we start with
a simple application of the Bishop-de Leeuw Theorem.

Lemma 2.4.1 For every linear inequality preserving functional Γ ∈ C(S)∩
B1 on M , there exists a measure µΓ : ex(C(S) ∩B1) ∩ B0 → R+, such that

Γ(f) =
∫

f̃ dµΓ for all f ∈ M. (2.15)
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Proof. The assertion follows directly from Theorem 2.2.3 using Proposition
2.2.1 and Proposition 2.3.3 and from f̃ ∈ A(C(S)) for all f ∈ M . 2

We obviously have found that the continuous linear functional
∫
· dµΓ rep-

resents the linear inequality preserving functional Γ via the nonlinear appli-
cation f 7→ f̃ . For totally monotone games (i.e. belief functions in the nor-
malized case), it is well-known that the transform (which is called Möbius
transform) is unique. For supermodular (i.e. 2-monotone) and exact set
functions, the representing measure µΓ needs not to be unique as the fol-
lowing example shows.

Example 2.4.2 Let Ω = {1, 2, 3} and ν : 2Ω → R be the normalized su-
permodular (hence exact) set function defined by ν(A) := 1

2 if and only if
|A| = 2 and ν(A) := 0 if and only if |A| < 2. Then ν is an extreme
point1 of the set of normalized supermodular, resp. exact, set functions on
2Ω. Suppose ν is a convex combination of two supermodular, resp. exact,
set functions ν1 and ν2. Obviously, ν1(A) = ν2(A) = ν(A) for all A with
ν(A) ∈ {0, 1}, i.e. |A| 6= 2. Therefore, suppose ν1({1, 2}) > ν({1, 2}) = 1

2 .
By supermodularity, resp. exactness, of ν1, 1{1} ≥ 1{1,2} + 1{1,3} − 1 implies
ν1({1}) ≥ ν1({1, 2}) + ν1({1, 3})− 1 such that ν1({1, 3}) < 1

2 . Analogously,
we conclude ν1({2, 3}) < 1

2 . The same argument applied to ν2 implies that
both ν1 and ν2 are at least for two of three sets A with |A| = 2 smaller than
or equal to ν(A). Hence ν1 = ν2 = ν.
Further on, it is easy to see that all unanimity games on 2Ω are extreme
points of the set of normalized supermodular, resp. exact, set functions.
The normalized supermodular (hence exact) set function ν ′ : 2Ω → R de-
fined by ν ′(A) := 1

3 if and only if |A| = 2 and ν ′(A) := 0 if and only if
|A| < 2 can be obtained by two different convex combinations of extreme
points, ν ′ = 1

3u{1,2} + 1
3u{1,3} + 1

3u{2,3} and ν ′ = 2
3ν + 1

3uΩ. Since the coeffi-
cients of the extreme points used in the convex combinations are the masses
of the transform µν′ of ν ′, we obtain that uniqueness of the representing
measure cannot be guaranteed.

To obtain uniqueness independently from the considered class of linear in-
equality preserving functionals, we have to draw our attention to the inte-
grals because for two representing measures µΓ and µ′Γ of Γ we have, by

1It can be shown that ν is the only non-unanimity game in the set of extreme points
of the set of normalized supermodular, resp. exact, set functions.
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Lemma 2.4.1, ∫
f̃ dµΓ =

∫
f̃ dµ′Γ for all f ∈ M. (2.16)

So, if we just restrict the continuous linear functional
∫
· dµΓ to the linear

space span(M̃) we get the desired uniqueness.

By merely collecting the results from Lemma 2.4.1, the remarks in the pre-
ceding paragraph (especially Equation (2.16)) and Proposition 2.3.4, we ob-
tain the subsequent proposition which contains the essential mathematical
part of the main theorem of this chapter (Theorem 2.4.4).

Proposition 2.4.3 The mapping

C(S) →
{(∫

· dµ
)∣∣

span(M̃)

∣∣∣µ : ex(C(S) ∩B1) ∩ B0 → R+ measure
}

,

Γ 7→
( ∫

· dµΓ

)∣∣
span(M̃)

(2.17)

with Γ(f) =
∫

f̃ dµΓ for all f ∈ M is bijective.

We now expand this first result to the linear spaces spanned by the respective
sets used in Proposition 2.4.3. Thus, denote by

V1 :=
{

Γ1 − Γ2

∣∣∣ Γ1,Γ2 ∈ C(S)
}

(2.18)

the linear space of functionals spanned by C(S) and by

V2 :=
{(∫

· dµ
)∣∣

span(M̃)

∣∣∣ µ : ex(C(S) ∩B1) ∩ B0 → R

measure of bounded variation
}

. (2.19)

the linear space of restricted integrals w.r.t. signed measures on ex(C(S) ∩
B1) ∩ B0 of bounded variation. Let V1 be endowed with TV1 , the relative
topology of V1 generated by T , i.e. the smallest topology making all f̃ re-
stricted to V1 continuous and let V2 be endowed with TV2 , the weak∗ topol-
ogy, i.e. the smallest topology making all natural embeddings ˜̃

f : V2 → R,
˜̃
f
(
(
∫
· dµ)|span(M̃)

)
:=
∫

f̃ dµ, continuous.
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Theorem 2.4.4 There is a linear isomorphism ϕ : V1 → V2 between the
linear spaces defined in (2.18) and (2.19). The isomorphism is determined
by the identity

Γ(f) =
∫

f̃ dµ for all f ∈ M. (2.20)

The isomorphism ϕ is topological, i.e. a homeomorphism, between the topo-
logical spaces (V1, TV1) and (V2, TV2). Moreover, Γ is contained in C(S) if
and only if its transformed ϕ(Γ) is monotone.

Proof. To prove that ϕ is well defined, it suffices to show that for every Γ ∈
V1 there is a measure µ : ex(C(S)∩B1)∩B0 → R of bounded variation with
Γ(f) =

∫
f̃ dµ for all f ∈ M because uniqueness of the image is guaranteed

by Equation (2.20). Suppose Γ = Γ1 − Γ2 with Γ1,Γ2 ∈ C(S). Then, by
Proposition 2.4.3, there exist measures µ1, µ2 on ex(C(S)∩B1)∩B0 satisfying
Γ1(f) =

∫
f̃ dµ1 and Γ2(f) =

∫
f̃ dµ2 for all f ∈ M . Thus,

Γ(f) = Γ1(f)− Γ2(f) =
∫

f̃ dµ1 −
∫

f̃ dµ2 =
∫

f̃ d(µ1 − µ2) (2.21)

for all f ∈ M , i.e. ϕ is well defined. Injectivity of ϕ directly follows from
Equation (2.20) since Γ1 6= Γ2, Γ1,Γ2 ∈ V1, implies

∫
f̃ dµ1 6=

∫
f̃ dµ2 for

all f ∈ M with Γ1(f) 6= Γ2(f) and µ1, resp. µ2, satisfying Equation (2.20)
for Γ1, resp. Γ1. Since, by the Hahn-Jordan Decomposition Theorem, ev-
ery measure µ of bounded variation can be decomposed into a difference
µ = µ1 − µ2, µi measures, i ∈ {1, 2}, we obtain surjectivity of ϕ simply
by reading Equation (2.21) from right to left, again using Proposition 2.4.3.
Linearity of ϕ is rather obvious. So, we have shown that ϕ is a linear iso-
morphism between the linear spaces V1 and V2.
By setting X := M and V := V1 in the subsequent Proposition 2.4.5, it fol-
lows immediately that ϕ also is a homeomorphism between the topological
spaces (V1, TV1) and (V2, TV2).
Finally, the last assertion directly follows from Lemma and 2.4.1 Proposition
2.3.4. 2

We now provide the deferred, fairly general proposition used in Theorem
2.4.42.

2This proposition can also be used to prove that the isomorphism between the linear
spaces respectively spanned by the totally monotone set functions and the signed bounded
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Proposition 2.4.5 Let X be a non-empty set and V a linear space of real-
valued functions on X. Define

X̃ := {x̃ : V → R | x̃(v) := v(x), x ∈ X} , (2.22)
Ṽ := {ṽ : X̃ → R | ṽ(x̃) := x̃(v), v ∈ V } , (2.23)
˜̃X := {˜̃ ω
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missing. For exact set functions, resp. exact functionals, such examinations
haven’t even been commenced yet. Therefore, it remains as an open problem
to determine the set of extreme points of C(S) for a given M . Additionally,
for possible applications of Theorem 2.4.4, it remains as an open problem
what condition M has to meet in order to make ex(C(S)) finite.

Theorem 2.4.4 can be used to construct linear inequality preserving func-
tionals in the following way. After determining the extreme points of a
convex set C(S) of linear inequality preserving functionals any element of
C(S) can be obtained by assigning weights to all extreme points. There is
an analogous situation in Dempster-Shafer theory of evidence where these
weights are called “basic probability assignments”.

Finally, there is some hope that concepts known in standard measure and
probability theory like products and independence may be introduced in a
fairly natural way for non-additive, linear inequality preserving set functions
via the Möbius type transform presented in this chapter.



Chapter 3

A Berry–Esséen Type Estimate for Lévy’s

Metric

3.1 Introduction

All results providing an estimate of the speed of convergence to the normal
distribution can be classified into four groups, on the one hand by using
Kolmogorov’s metric or any other (e.g. Lévy’s metric), and on the other
hand by using characteristic functions in the proof or working on the orig-
inal space of distribution functions. Except for the case of calculating the
distance w.r.t. Lévy’s metric without using characteristic functions, all vari-
ants can be found in literature. In this chapter, we therefore present some
upper estimates for Lévy’s metric and, as an application, a Berry–Esséen
type estimate for the Central Limit Theorem in Lyapunov’s version in terms
of Lévy’s metric which improves the original one.

Our results are motivated as follows. In probability theory, characteristic
functions are often introduced as a purely technical tool mainly to prove the
Central Limit Theorem (especially in lectures). By proving the latter di-
rectly on the space of distribution functions, we avoid technical steps which
could distract from the underlying mathematical ideas. Furthermore, the
use of Lévy’s metric instead of Kolmogorov’s metric has the advantage that
the former always metricizes convergence in distribution, whereas the latter
only metricizes convergence in distribution to continuous limit distributions
(which admittedly is sufficient for the proof of the Central Limit Theorem).
Finally, our estimate of the rate of convergence to the normal distribution

41
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w.r.t. Lévy’s metric is better than the original estimate from Berry by far
and even topical estimates w.r.t. Kolmogorov’s metric are not better than
ours.

Since the use of Lévy’s metric is not very common, we provide some histor-
ical notes. In 1925, Lévy introduced a metric on the space of distribution
functions in a very informal way (cf. Lévy 1925 [25, p. 194 – 195, 199 –
200]). In fact, he defined the distance between two distribution functions
to be the Hausdorff distance (without referring to it) between the graphs of
these distribution functions in R2 after filling the jumps with line segments.
In 1937, Lévy put his definition in concrete terms in a footnote (cf. Lévy
1937 [26, p. 241]) and, in two different versions, in a note (cf. Fréchet 1937
[17, p. 333 – 334]). Unfortunately, the most intuitive and least technical
parts of Lévy’s work regarding his metric (cf. Lévy 1925 [25, p. 194 – 195]
and Fréchet 1937 [17, p. 333 – 334]) are almost completely disregarded in
literature. Hence it is not surprising that some facts concerning Lévy’s met-
ric – like the relation to the Hausdorff distance (cf. Zolotarev 1997 [41, p.
64]) – have been reinvented. By mostly presenting a definition without its
simple geometrical interpretation in literature, Lévy’s metric mainly got the
status of being a curiosity, at best good enough for exercises in probability
books.

This section is organized as follows. In Section 2, Lévy’s metric is defined
and elementary properties are proved. We also state some geometrical inter-
pretations of Lévy’s metric. Relations between Lévy’s metric, Fan’s metric,
and Kolmogorov’s metric are shown in Section 3. Some of these relations
can be used to improve estimates of Lévy’s metric and to show easily the
well-known fact that stochastic convergence implies convergence in distri-
bution. In Section 4, we provide some new estimates for Lévy’s metric only
using the absolute moments of the random variables involved. One of these
is used to estimate the rate of convergence to the normal distribution w.r.t.
Lévy’s metric and we compare this result with existing ones.

3.2 Definition and basic properties

Let (Ω,A, P ) denote a probability space and for any random variable X let
FX denote the distribution function of X, i.e. FX(x) = P (X ≤ x). E(X)
will denote the expected value of X, V (X) will denote the variance of X.



3.2. DEFINITION AND BASIC PROPERTIES 43

Proposition 3.2.1 For two random variables X, Y : Ω → R, let dL(X, Y )
be defined by

dL(X, Y ) := inf
{

h ≥ 0 | FX(x) ≤ FY (x + h) + h,

FY (x) ≤ FX(x + h) + h ∀x ∈ R
}

. (3.1)

Then dL is a pseudo-metric on the space of random variables.

Definition 3.2.2 The pseudo-metric dL is called Lévy’s metric.

The pseudo-metric dL has an intuitive geometrical interpretation. Both con-
ditions in the definition of Lévy’s metric can be rewritten as FY (x + h) ≥
FX(x)−h and FY (x−h) ≤ FX(x)+h for all x ∈ R. If FY is continuous then,
by the Mean Value Theorem, these conditions guarantee that dL ≤ h if and
only if FY meets every square Sx,h with corners at (x − h, FX(x) + h) and
(x+h, FX(x)−h) for all x ∈ R. Generally, dL ≤ h if and only if the completed
graph FY of the distribution function FY , being defined as a subset of R2

by FY := {(x, y) ∈ R2 | y ∈ [limx′↗x FY (x′), limx′↘x FY (x′)]}, meets every
square Sx,h, x ∈ R. This condition is equivalent to the claim that the Haus-
dorff distance (w.r.t. the metric d on R2, defined by d((x1, x2), (y1, y2)) :=
max{|x1 − y1|, |x2 − y2|}), between the sets FX and FY ,

dHausdorff(FX , FY ) = max
{

max
x̄∈FX

min
ȳ∈FY

d(x̄, ȳ), max
ȳ∈FY

min
x̄∈FX

d(x̄, ȳ)
}

, (3.2)

is smaller than or equal to h. Therefore, Lévy’s metric can be expressed
as the Hausdorff distance on the set of completed graphs of distribution
functions, i.e.

dL(X, Y ) = dHausdorff(FX , FY ). (3.3)

Proof of Proposition 3.2.1. By taking a close look at the definition of dL,
we see dL ∈ [0, 1], especially non-negativity of dL. Obviously, dL(X, X) = 0.
Symmetrie holds by definition. For the proof of the triangular inequality,
suppose h1 > dL(X, Y ), h2 > dL(Y, Z). Then for all x ∈ R

FX(x) ≤ FY (x + h1) + h1 ≤ FZ(x + (h1 + h2)) + (h1 + h2)

and analogously FZ(x) ≤ FX(x + (h1 + h2)) + (h1 + h2), i.e. dL(X, Z) ≤
h1 + h2. Hence dL(X, Z) ≤ dL(X, Y ) + dL(Y, Z). 2
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Figure 3.1: Ge ometrical interpretation of L�evy's metricUsually, L�e vy's metric is de�ned on the set of distribution functions insteadon their corresp onding random variables. Since all estimates of L�evy's metricin this chapter only use absolute moments of the random variables involved,we have slightly changed the domain.
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Part (c) is already known (cf. Zolotarev 1967 [40, Lemma 1]) but our proof
is shorter and easier. The parts (a) and (b) can intuitively be seen by inter-
preting Lévy’s metric geometrically as the Hausdorff distance between the
corresponding completed distribution functions since the geometrical rela-
tion of the distribution functions w.r.t. each other does not change by the
given operations, translation and reflection w.r.t. the point (0, 1

2). Never-
theless, a formal proof will be given below.

Proof.

(a) This follows directly from the definition of Lévy’s metric and from
Fx+c(x) = FX(x− c).

(b) We prove h > dL(X, Y ) implies h ≥ dL(−X,−Y ) and h > dL(−X,−Y )
implies h ≥ dL(X, Y ). Suppose h > dL(X, Y ). Then there exists
an ε > 0 such that FX(x) ≤ FY (x + h − ε) + h − ε and FY (x) ≤
FX(x + h− ε) + h− ε for all x ∈ R. Furthermore,

FX(x) ≤ FY (x + h− ε) + h− ε

⇔ P (−X ≥ −x) ≤ P (−Y ≥ −x− h + ε) + h− ε

⇔ P (−X < −x) ≥ P (−Y < −x− h + ε)− h + ε

⇔ P (−X < −x + h) + h ≥ P (−Y < −x + ε) + ε

⇒ F−Y (−x) ≤ F−X(−x + h) + h.

Analogously, we conclude F−X(−x) ≤ F−Y (−x + h) + h from h >
dL(X, Y ), i.e. h > dL(X, Y ) implies h ≥ dL(−X,−Y ). The reverse
direction, i.e. h > dL(−X,−Y ) implies h ≥ dL(X, Y ), can be obtained
in the same way.

(c) Let hi := dL(Xi, Yi), i = 1, 2. Then

FX1+X2(x) =
∫

FX1(x− y) dFX2(y)

≤
∫

FY1(x− y + h1) + h1 dFX2(y)

=
∫

FX2(x− y + h1) dFY1(y) + h1

≤
∫

FY2(x− y + h1 + h2) + h2 dFY1(y) + h1

= FY1+Y2(x + h1 + h2) + h1 + h2
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Analogously, we obtain FY1+Y2(x) ≤ FX1+X2(x + h1 + h2) + h1 + h2

and thus the desired inequality.

(d) From the triangular inequality follows

dL(X, Y ) ≤ dL(X − Y, 0) + dL(Y, Y ) = dL(X − Y, 0).

Since F|X−Y | ≤ FX−Y we find for every h ≥ dL(|X − Y |, 0)

(i) F0(x) ≤ F|X−Y |(x + h) + h ≤ FX−Y (x + h) + h for all x ∈ R.

The inequality

(ii) FX−Y (x) ≤ F0(x + h) + h for all x ≥ −h

is trivially true.
To prove

(iii) FX−Y (x) ≤ F0(x + h) + h for all x < −h,

we calculate, using F|X−Y |(h) ≥ F0(0)− h = 1− h,

sup
x<−h

FX−Y (x) = sup
x>h

P (Y −X ≥ x)

≤ sup
x>h

P (|X − Y | ≥ x)

= 1− inf
x>h

P (|X − Y | < x)

= 1− F|X−Y |(h)
≤ h

= F0(x + h) + h. 2

3.3 Relations between Lévy’s metric and other
probability metrics

Probability metrics are commonly introduced to metricize different types of
convergence. In this section, we mention Fan’s metric and Kolmogorov’s
metric and enlighten their relations to Lévy’s metric.
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It is well-known that Lévy’s metric metricizes convergence in distribution
(cf. e.g. Galambos 1988 [18, Section 4.3]), i.e. for a sequence of random
variables Xn holds

FXn(x) → FX(x) ∀ continuity points x of FX ⇐⇒ dL(Xn, X) → 0. (3.4)

Another probability metric which will turn out to be nicely related to Lévy’s
metric is Fan’s metric dF which is defined on the set of random variables by
(cf. Fan 1944 [16] or Dudley 1989 [13, p. 226])

dF (X, Y ) := inf
{
h ∈ R | P (|X − Y | > h) ≤ h

}
. (3.5)

It is well-known (cf. e.g. Dudley 1989 [13, Theorem 9.2.2]) that this metric
metricizes stochastic convergence, i.e.

∀ ε > 0 : P (|Xn −X| > ε) → 0 ⇐⇒ dF (Xn, X) → 0. (3.6)

A third metric of interest in our context is

dK(X, Y ) := ‖FX − FY ‖∞, (3.7)

sometimes referred to as Kolmogorov’s metric. As it can easily be shown
from the definition, Kolmogorov’s metric metricizes convergence in distribu-
tion if and only if the limit distribution function is continuous.

In the following proposition, we collect some relations between Lévy’s metric,
Fan’s metric and Kolmogorov’s metric. Part (c) is well-known and Part (d)
has already been stated (without proof) by Zolotarev (cf. Zolotarev 1997
[41, p. 65]).

Proposition 3.3.1 Let X, Y be random variables. Then

(a) dF (X, Y ) = dL(|X − Y |, 0).

(b) dL ≤ dF .

(c) dL ≤ dK .

(d) dK(X, Y ) ≤ (1 + ‖F ′
X‖∞) · dL(X, Y ) if FX is differentiable.
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Proof.

(a) One easily verifies that the inequalities in the definition of dL(|X −
Y |, 0) hold for all h > dF (X, Y ) and do not hold for all h < dF (X, Y ).

(b) This follows directly from (a) and Proposition 3.2.4 (d).

(c) Elementary calculations show that the inequalities in the definition of
dL hold for all h > dK(X, Y ).

(d) Let x ∈ R and suppose FY (x) > FX(x). Then, by differentiability of
FX , FX(x+dL(X, Y )) ≤ FX(x)+dL(X, Y ) · ‖F ′

X‖∞ and, by definition
of Lévy’s metric and Lemma 3.2.3, FY (x) ≤ FX(x + dL(X, Y )) +
dL(X, Y ). Thus FY (x) ≤ FX(x) + (1 + ‖F ′

X‖∞) · dL(X, Y ).
Analogously, we obtain FY (x) ≥ FX(x) − (1 + ‖F ′

X‖∞) · dL(X, Y ) in
the case FY (x) < FX(x) from FX(x−dL(X, Y )) ≥ FX(x)−dL(X, Y ) ·
‖F ′

X‖∞ and FY (x) ≥ FX(x− dL(X, Y ))− dL(X, Y ). 2

These results have important implications. First, from Proposition 3.3.1
(b) directly follows the well-known fact that stochastic convergence implies
convergence in distribution. Second, Proposition 3.3.1 (b) can and will in
Corollary 3.4.8 be used to adopt upper estimates for Fan’s metric between
two random variables as some w.r.t. Lévy’s metric. Third, Proposition 3.3.1
(c) and (d) will help to compare the rate of convergence of a sequence of ran-
dom variables to the standard normal distribution when one is given w.r.t.
Kolmogorov’s metric and the other in terms of Lévy’s metric.

We conclude this section with stating an upper estimate for Fan’s metric
between two random variables which in some cases will improve estimates
w.r.t. Lévy’s metric in the way remarked in the preceding paragraph. This
estimate has the advantage that it only uses the variances of the random
variables.

Proposition 3.3.2 Let X, Y be two random variables with E(X) = E(Y ).
Then

dF (X, Y ) ≤ m+1
√

E(|X − Y |m) =
(
‖X − Y ‖m

) m
m+1 (3.8)

for all m ∈ N Additionally, if X, Y are independent then

dF (X, Y ) ≤ 3
√

V (X) + V (Y ). (3.9)
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Proof. First, suppose dF (X, Y ) > 0. From the definition of Fan’s metric
follows dF (X, Y )− ε < 1−F|X−Y |(dF (X, Y )− ε) for every ε ∈ ]0, dF (X, Y )[.
By the Generalized Chebyshev Inequality and by E(X) = E(Y ), we get
1 − F|X−Y |(dF (X, Y ) − ε) ≤ E(|X − Y |m)(dF (X, Y ) − ε)−m. This implies
dF (X, Y ) − ε < m+1

√
E(|X − Y |m) and since ε ∈]0, dF (X, Y )[ was chosen

arbitrarily, we obtain dF (X, Y ) ≤ m+1
√

E(|X − Y |m). This inequality obvi-
ously also holds for dF (X, Y ) = 0. Now suppose X and Y are independent.
Then

dF (X, Y ) ≤ 3
√

V (X − Y ) = 3
√

V (X) + V (Y ). 2

3.4 Main Results

The Central Limit Theorem in Lyapunov’s version states that whenever

1
σ3(Sn)

n∑
i=1

E(|Xi|3) −−−→
n→∞

0 (3.10)

holds for a sequence (Xn)n∈N of independent identically distributed random
variables with E(Xn) = 0 for all n ∈ N and having finite second and third
absolute moments then the normalized partial sum Sn

σ(Sn) , Sn :=
∑n

i=1 Xi,
is asymptotically standard normal distributed. The Berry–Esséen Theorem
then provides an estimate of the rate of convergence of the distributions of
the sequence of partial sums to the standard normal distribution in terms of
Kolmogorov’s metric depending on the converging term in Formula (3.10)
(cf. e.g. Berry 1941 [3, Theorem 5]),

dK

(
Sn

σ(Sn)
, Y

)
≤ 3.6 · 4

√√√√ 1
σ3(Sn)

n∑
i=1

E
(
|Xi|3

)
, (3.11)

with Y being standard normal distributed. Obviously, the Berry–Esséen
Theorem implies the Central Limit Theorem.

In this section, we show that there is a Berry–Esséen type theorem for Lévy’s
metric which, compared to the standard theorem, yields better estimates.
To achieve this objective, we provide a class of upper estimates for Lévy’s
metric all referring to some absolute moments of the random variables.
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We adopt a method of proving the Central Limit Theorem directly on the
set of distribution functions from Huber (cf. Huber 1975 [22, p. 49 – 53])
which evidently originates from Lindeberg (cf. Lindeberg 1922 [27]). Huber
estimated the difference between FSn and the distribution function of the
standard normal distribution without using a probability metric. We incor-
porate this method in Lemma 3.4.2, Proposition 3.4.3 and Theorem 3.4.9
but by adding the use of Lévy’s metric we attach importance to the measure-
ment of the speed of convergence to the normal distribution. Furthermore,
the class of estimates for Lévy’s metric presented here depends on the use
of sufficiently often differentiable approximations of indicator functions of
the type x 7→ 1]−∞,x0](x), x0 ∈ R, and we show optimal choices of such
functions in Proposition 3.4.4 and Proposition 3.4.5.

As a preliminary result, we start with a special version of Taylor’s Theorem
and the Fundamental Theorem of Calculus. For a natural number m, denote
by Cm

b (R) the linear space of bounded, real-valued functions on R having m
bounded continuous derivatives. Furthermore, denote by Fm(R) the linear
subspace of Cm−1

b (R) consisting of all functions f : R → R with f (m)(x)
existing for all x ∈ R except for a finite subset Af of R and with ‖f (m)‖∞ :=
‖f (m)|R\Af

‖∞ < ∞.

Lemma 3.4.1

(a) Fundamental Theorem of Calculus
Let f ∈ F1(R) and x0 ∈ R. Then

f(x) = f(x0) +
∫ x

x0

f ′(t) dt (3.12)

holds for every x ∈ R.

(b) Taylor’s Theorem
Let f ∈ Fm(R) and x0 ∈ R. Then

f(x) =
m−1∑
k=0

f (k)(x0)
k!

(x− x0)k + Rm(x0, x) (3.13)

holds for all x ∈ R with

‖Rm(x0, x)‖∞ ≤ ‖f (m)‖∞
m!

|x− x0|m. (3.14)
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Proof.

(a) If there isn’t any discontinuity point of f ′ between x0 and x the result
holds by the classical Fundamental Theorem of Calculus. Now sup-
pose there is exactly one discontinuity point a of f ′ between x0 and
x, w.l.o.g. suppose x0 < a < x. Then, applying the classical Funda-
mental Theorem of Calculus and continuity of f , for sufficiently small
ε > 0,

f(x) =
[
f(x)− f(a + ε)

]
+
[
f(a + ε)− f(a− ε)

]
+
[
f(a− ε)f(x0)

]
=

∫ x

a+ε
f ′(t) dt +

[
f(a + ε)− f(a− ε)

]
+
∫ a−ε

x0

f ′(t) dt

−−−→
ε→0

∫ x

x0

f ′(t) dt.

If x0 or x is a discontinuity point of f ′ itself this result remains true
by boundedness of f ′, resp. continuity of f . By induction, we obtain
the general result.

(b) For a given f ∈ Fm(R), denote by Af ⊂ R the set of real numbers x for
which f (m)(x) does not exists. Furthermore, denote by α the minimal
distance between two elements in Af , α := min{|y − z| | y, z ∈ Af}.
Define the sequence (fn)n∈N in Cm

b (R) in the following way. Set

f (m)
n (x) := f (m)(x)

if miny∈Af
|x− y| ≥ α

2n and

f (m)
n (x) := λf (m)(y − α

2n) + (1− λ)f (m)(y + α
2n)

if x = λ(y − α
2n) + (1 − λ)(y + α

2n) for some y ∈ Af with |x − y| <
α
2n and λ ∈ [0, 1]. Furthermore, set recursively f

(k)
n (x) := f (k)(0) +∫ x

0 f
(k−1)
n (t) dt for each k = m− 1, . . . , 0. By construction, ‖f (m)

n ‖∞ ≤
‖f (m)‖∞. From (a) follows

‖f (m−1)
n −f (m−1)‖∞ ≤ |Af |·12 ·

(
2·‖f (m−1)‖

)
·
(
2 α

2n

)
= 2·|Af |·‖f (m−1)‖ α

2n .

Hence, for every x ∈ R, the term |f (k)
n (x)−f (k)(x)|, k ∈ {0, . . . ,m−1},

can be estimated only using 2 · |Af | ·‖f (m−1)‖ α
2n , k, and |x|. Thus, f

(k)
n
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converges pointwise to f
(k)
n . Applying Taylor’s Theorem for every fn

and using pointwise convergence of f
(k)
n to f (k), k = 0, ..,m− 1, yields

the desired results. 2

Now we come to a fundamental lemma in this section.

Lemma 3.4.2

(a) Let f ∈ Fm(R), m ∈ N and let X1, . . . , Xn, Y1, . . . , Yn be pairwise
independent random variables with E(Xk

i ) = E(Y k
i ), i = 1, . . . , n,

k = 1, . . . ,m− 1. Then with Sn :=
∑n

i=1 Xi and Tn :=
∑n

i=1 Yi

|E(f(Sn))− E(f(Tn))| ≤ ‖f (m)‖∞
m!

(
n∑

i=1

E(|Xi|m) +
n∑

i=1

E(|Yi|m)

)
.

(b) If especially n = 1 then (a) also holds if X1 and Y1 are dependent.

Proof. By Lemma 3.4.1,

f(X1 + · · ·+ Xn) =
m−1∑
k=1

f (k)(Sn−1)
k!

Xk
n + Rm(Sn−1, Sn) (3.15)

with

Rm(Sn−1, Sn) ≤ ‖f (m)‖∞
m!

|Xn|m.

Integrating both sides of Equation (3.15) yields (using independence in the
case n > 1)

E(f(Sn)) =
m−1∑
k=1

1
k!

E(f (k)(Sn−1))E(Xk
n) + E(Rm(Sn−1, Sn))

and with E(Xk
i ) = E(Y k

i ) follows∣∣∣E(f(Sn−1 + Xn))− E(f(Sn−1 + Yn))
∣∣∣

≤ ‖f (m)‖∞
m!

(
E(|Xn|m) + E(|Yn|m)

)
. (3.16)
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Using

∣∣∣E(f(Sn))− E(f(Tn))
∣∣∣

≤
n−1∑
i=0

∣∣∣∣∣∣E
f

n−i∑
j=1

Xj +
n∑

j=n−i+1

Yj

− E

f

n−i−1∑
j=1

Xj +
n∑

j=n−i

Yj

∣∣∣∣∣∣
and the corresponding analogous version of (3.16), we get the desired results
of (a) and (b). 2

The subsequent proposition provides the announced class of upper estimates
for Lévy’s metric.

Proposition 3.4.3

(a) Let f ∈ Fm(R), m ∈ N, with

f(x) = 1 if x ≤ 0 ,
f(x) ∈ [0, 1] if 0 < x < 1 ,
f(x) = 0 if x ≥ 1 .

(3.17)

Let X1, . . . , Xn, Y1, . . . , Yn be pairwise independent random variables
with E(Xk

i ) = E(Y k
i ), i = 1, . . . , n, k = 1, . . . ,m − 1. Define Sn :=∑n

i=1 Xi and Tn :=
∑n

i=1 Yi. Then

dL(Sn, Tn) ≤ m+1

√√√√‖f (m)‖∞
m!

(
n∑

i=1

E(|Xi|m) +
n∑

i=1

E(|Yi|m)

)
. (3.18)

(b) If especially n = 1 then (a) also holds if X1 and Y1 are dependent.
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Proof. Define fx0,h : R → R by fx0,h(x) := f(x−x0
h ). To prove (a), resp. (b),

we use Lemma 3.4.2 (a), resp. (b), and obtain

FSn(x0) = E(1]−∞,x0] ◦ Sn)
≤ E(fx0,h ◦ Sn)

≤ E(fx0,h ◦ Tn) +
‖f (m)‖∞
hmm!

(
n∑

i=1

E(|Xi|m) +
n∑

i=1

E(|Yi|m)

)

≤ E(1]−∞,x0+h] ◦ Tn) +
‖f (m)‖∞
hmm!

(
n∑

i=1

E(|Xi|m) +
n∑

i=1

E(|Yi|m)

)

= FTn(x0 + h) + h−m · ‖f
(m)‖∞
m!

(
n∑

i=1

E(|Xi|m) +
n∑

i=1

E(|Yi|m)

)
.

With

h̃ := m+1

√√√√‖f (m)‖∞
m!

(
n∑

i=1

E(|Xi|m) +
n∑

i=1

E(|Yi|m)

)
follows FSn(x0) ≤ FTn(x0 + h̃) + h̃ and due to symmetry we also obtain
FTn(x0) ≤ FSn(x0 + h̃) + h̃. By the definition of dL, we get (a), resp. (b). 2

The main feature of Proposition 3.4.3 is that Lévy’s metric can be estimated
only using absolute moments of the random variables involved. By choos-
ing f in this proposition in an optimal way, i.e. minimizing ‖f (m)‖∞ for
a given m, we will be able to provide a rate of convergence to the normal
distribution, i.e. providing the Berry–Esséen type theorem for Lévy’s metric.

We now put Proposition 3.4.3 (a) in concrete terms for m ∈ {1, 2, 3}. The
occurring regularities of the form of the functions used in the proof gives
rise for conjecturing that this result also holds for every natural number m
(cf. Conjecture 3.4.6).

Proposition 3.4.4 Let X1, . . . , Xn, Y1, . . . , Yn be pairwise independent ran-
dom variables satisfying E(Xk

i ) = E(Y k
i ) with i = 1, . . . , n, k = 1, . . . ,m−1

and m ∈ {1, 2, 3}. Then

dL(Sn, Tn) ≤ m+1

√√√√4m−1

m

(
n∑

i=1

E(|Xi|m) +
n∑

i=1

E(|Yi|m)

)
. (3.19)



3.4. MAIN RESULTS 55

Proof. Define f1, f2, f3 : R → [0, 1] by

f1(x) := 1−
∫ x

0
40 · 0! · 1[0,1[(t1) dt1 ,

f2(x) := 1−
∫ x

0

∫ t1

0
41 · 1! ·

(
1[0, 1

2
[ − 1[ 1

2
,1[

)
(t2) dt2 dt1 , (3.20)

f3(x) := 1−
∫ x

0

∫ t1

0

∫ t2

0
42 · 2! ·

(
1[0, 1

4
[∪[ 3

4
,1[ − 1[ 1

4
, 3
4
[

)
(t3) dt3 dt2 dt1 .

By Lemma 3.4.1 (b), fi ∈ F i(R) and ‖f (i)
i ‖∞ = 4i−1 · (i − 1)!. Applying

Proposition 3.4.3 (a) finishes the proof. 2

The subsequent proposition answers the question of optimality of the result
given in the preceding proposition.

Proposition 3.4.5 The functions fi, i = 1, 2, 3, defined in (3.20) sat-
isfy ‖f (i)

i ‖∞ = inf{‖f (i)‖∞ | f ∈ F i(R) with (3.17)}. Therefore, Estimate
(3.19) is the best possible concretion of Estimate (3.18).

Proof. Suppose g1 ∈ F1(R) satisfies the Condition (3.17). Then

0 = g1(1) = g1(0) +
∫ 1

0
g′1(t1) dt1 ≥ g1(0) +

∫ 1

0
−‖g′1‖∞ dt1 = 1− ‖g′1‖∞,

i.e. ‖g′1‖∞ ≥ 1, hence f1 is an optimal function.
Now suppose g2 ∈ F2(R) satisfies the Condition (3.17). W.l.o.g., we can
assume that g2 satisfies the symmetric property g2(t) = 1 − g2(1 − t) since
otherwise we use the function g2 ∈ F2(R), defined by

g2(t) := 1
2 · g2(t) + 1

2 · (1− g2(1− t)).

It satisfies (3.17), g2(t) = 1 − g2(1 − t) and ‖g2
′′‖∞ ≤ ‖g′′2‖∞. Then, using

symmetry of g2, g2(0) = 1 and g′2(0) = 0,

1
2 = g2(1

2) = g2(0) +
∫ 1

2

0

(
g′2(0) +

∫ t1

0
g′′2(t2) dt2

)
dt1

≥ 1 +
∫ 1

2

0

∫ t1

0
−‖g′′2‖∞ dt2 dt1

= 1 +
∫ 1

2

0
−‖g′′2‖∞ · t1 dt1

= 1− 1
8 · ‖g

′′
2‖∞,

i.e. ‖g′′2‖∞ ≥ 4, hence f2 is an optimal function.
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Finally, suppose g3 ∈ F3(R) satisfies the Condition (3.17). From the sym-
metric property of g3, g3(t) = 1 − g3(1 − t) follows g′3(t) = g′3(1 − t) and
g′′3(t) = −g′′3(1 − t), hence g′′3(1

2) = 0. Furthermore, g′′3(t) ≥ −‖g′′′3 ‖∞ · t,
t ∈ [0, 1

4 ], and g′′3(t) ≥ ‖g′′′3 ‖∞ · (t− 1
2), t ∈ [14 , 1

2 ]. Therefore,

1
2 = g3(1

2) = g3(0) +
∫ 1

2

0

(
g′3(0) +

∫ t1

0
g′′3(t2) dt2

)
dt1

= 1 +
∫ 1

4

0

∫ t1

0
g′′3(t2) dt2 dt1 +

∫ 1
2

1
4

∫ t1

0
g′′3(t2) dt2 dt1

≥ 1 +
∫ 1

4

0

∫ t1

0
−‖g′′′3 ‖∞ · t2 dt2 dt1

+
∫ 1

2

1
4

(∫ 1
4

0
−‖g′′′3 ‖∞ · t2 dt2 +

∫ t1

1
4

−‖g′′′3 ‖∞ · (t2 − 1
2) dt2

)
dt1

= 1− 1
64 · ‖g

′′′
3 ‖∞,

i.e. ‖g′′′3 ‖∞ ≥ 32, hence f3 is an optimal function. 2

The Estimate (3.19) has also been proved by the author to be valid for
some more natural numbers m. Optimality of Estimate (3.19) has also been
proved for m = 4. This gives rise to formulate the subsequent conjecture.

Conjecture 3.4.6 Let X1, . . . , Xn and Y1, . . . , Yn be pairwise independent
random variables satisfying E(Xk

i ) = E(Y k
i ), i = 1, . . . , n, k = 1, . . . ,m− 1

and m ∈ N. Then

dL(Sn, Tn) ≤ m+1

√√√√4m−1

m

(
n∑

i=1

E(|Xi|m) +
n∑

i=1

E(|Yi|m)

)
. (3.21)

Before turning to our main theorem, we give two rather simple applications
of Proposition 3.4.4.

For a random variable X, denote by M(X) a median of X, i.e.

M(X) ∈
[
sup{x ∈ R | FX(x) ≤ 1

2}, inf{x ∈ R | FX(x) ≥ 1
2}
]
, (3.22)

and by τ(X) := E(|X − M(X)|) the average absolute deviation from the
median. In insurance mathematics, a multiple ατ(X) of τ(X), α > 0, has
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been suggested as a risk loading since the premium principle E(X)+ατ(X)
can be represented as a (non-additive) Choquet integral (cf. Denneberg 1994
[11, Exercise 5.4]) having favorable properties for applications. In situations
like this one, where the volatility parameter τ(X) is used, the following
corollary of Proposition 3.4.4 may be of interest.

Corollary 3.4.7 Let X, Y be two random variables with M(X) = M(Y ).
Then

dL(X, Y ) ≤
√

τ(X) + τ(Y ). (3.23)

Proof. Since, by Proposition 3.2.4 (a), dL(X, Y ) = dL(X−MX,Y −MX) =
dL(X−MX,Y −MY ), the statement directly follows from Proposition 3.4.4
for m = 1. 2

For m = 2, Proposition 3.4.4 gets the subsequent form.

Corollary 3.4.8 Let X, Y be two random variables with E(X) = E(Y ).
Then

dL(X, Y ) ≤ 3

√
2
(
V (X) + V (Y )

)
. (3.24)

Additionally, if X, Y are independent then

dL(X, Y ) ≤ 3
√

V (X) + V (Y ). (3.25)

The last assertion directly follows from Proposition 3.3.2 using Proposition
3.3.1 (b).

In his 1967 paper, Zolotarev proved1 a weaker upper estimate of Lévy’s
metric than given in (3.25) (cf. Zolotarev 1967 [40, Lemma 2]),

dL(X, Y ) ≤ 3

√
4 max

{
V (X), V (Y )

}
. (3.26)

As the main application of Proposition 3.4.4 we now state a Berry–Esséen
type estimate of the rate of convergence to the normal distribution in terms
of Lévy’s metric.

1This proof contains significant gaps or some errors since the use of Chebychev’s In-
equality seems to be applied by mistake for negative values.
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Theorem 3.4.9 Let (Xn)n∈N be a sequence of independent random vari-
ables with E(Xn) = 0, V (Xn) = σ2

n > 0 and E(|Xn|3) finite. Furthermore,
let Y be a standard normal distributed random variable which is independent
of Xn for all n ∈ N. Then

dL

(
Sn

σ(Sn)
, Y

)
≤ 1.93 · 4

√√√√ 1
σ3(Sn)

n∑
i=1

E
(
|Xi|3

)
. (3.27)

Proof. Let (Yn) be a sequence of independent standard normal distributed
random variables. Successively using that

∑n
i=1

σ(Xi)
σ(Sn)Yi is standard normal

distributed, Proposition 3.4.4 with m = 3, σ3(Xi) ≤ E(|Xi|3) (Jensen’s

Inequality) and E(|Yi|3) =
√

8
π for all i ≤ n, we obtain

dL

(
Sn

σ(Sn)
, Y

)
= dL

(
Sn

σ(Sn)
,

n∑
i=1

σ(Xi)
σ(Sn)

Yi

)

≤ 4

√√√√ 16
3σ3(Sn)

(
n∑

i=1

E
(
|Xi|3

)
+

n∑
i=1

σ3(Xi)E
(
|Yi|3

))

≤ 4

√√√√ 16
3σ3(Sn)

(
n∑

i=1

E
(
|Xi|3

)(
1 + E

(
|Yi|3

)))

≤ 4

√√√√ 16
3σ3(Sn)

(
1 +

√
8
π

)( n∑
i=1

E
(
|Xi|3

))

≤ 1.93 · 4

√√√√ 1
σ3(Sn)

n∑
i=1

E
(
|Xi|3

)
. 2

A natural question arising now is how to compare the standard Berry–Esséen
estimate of the rate of convergence w.r.t. Kolmogorov’s metric to the one
obtained above. Using ‖F ′

Y ‖∞ = (
√

2π)−1 for a standard normal distributed
random variable Y , Proposition 3.3.1 (c), (d) and Theorem 3.4.9 together
yield that an estimate in terms of Kolmogorov’s metric,

dK

(
Sn

σ(Sn)
, Y

)
≤ C · 4

√√√√ 1
σ3(Sn)

n∑
i=1

E
(
|Xi|3

)
, (3.28)
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is better than the one in Theorem 3.4.9 if C < 1.93, incomparable if
C ∈ [1.93, 2.70], and worse if C > 2.70. Since C = 3.6 in Berry’s original
estimate (cf. Inequality (3.11)), our estimate is an improvement. Breiman
has mentioned, that there exist unpublished calculations giving bounds as
low as C = 2.05 (cf. Breiman 1992 [6, p. 184]). This bound is incomparable
to our result, but this also means that it is not better than ours.

3.5 Conclusions

It remains as an open problem to prove Conjecture 3.4.6. Although all rel-
evant cases of this conjecture, i.e. those cases actually used in this chapter,
have been proved in Proposition 3.4.4, it would be a nice result. Another
task remaining to do is to provide a rate of convergence for sequences of
independent distributed random variables (having certain additional prop-
erties) converging in distribution to a Poisson distributed random variable.
Such a result cannot be expressed in terms of Kolmogorov’s metric since the
limit distribution is not continuous and would therefore expose the advan-
tages of Lévy’s metric.
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[26] Lévy, P.: Théorie de l’Addition des Variables Aléatoires. Gauthier-
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